ترغب بنشر مسار تعليمي؟ اضغط هنا

MAGIC: Exact Bayesian Covariance Estimation and Signal Reconstruction for Gaussian Random Fields

53   0   0.0 ( 0 )
 نشر من قبل Benjamin D. Wandelt
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this talk I describe MAGIC, an efficient approach to covariance estimation and signal reconstruction for Gaussian random fields (MAGIC Allows Global Inference of Covariance). It solves a long-standing problem in the field of cosmic microwave background (CMB) data analysis but is in fact a general technique that can be applied to noisy, contaminated and incomplete or censored measurements of either spatial or temporal Gaussian random fields. In this talk I will phrase the method in a way that emphasizes its general structure and applicability but I comment on applications in the CMB context. The method allows the exploration of the full non-Gaussian joint posterior density of the signal and parameters in the covariance matrix (such as the power spectrum) given the data. It generalizes the familiar Wiener filter in that it automatically discovers signal correlations in the data as long as a noise model is specified and priors encode what is known about potential contaminants. The key methodological difference is that instead of attempting to evaluate the likelihood (or posterior density) or its derivatives, this method generates an asymptotically exact Monte Carlo sample from it. I present example applications to power spectrum estimation and signal reconstruction from measurements of the CMB. For these applications the method achieves speed-ups of many orders of magnitude compared to likelihood maximization techniques, while offering greater flexibility in modeling and a full characterization of the uncertainty in the estimates.



قيم البحث

اقرأ أيضاً

Centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds are determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hormander class. This includes the Matern class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension $p$ of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries are known a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number $p$ of parameters. In addition, we propose and analyze a novel compressive algorithm for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters $p$ of the sample-wise approximation of the GRF in Sobolev scales.
134 - S. C.Lim , L. P. Teo 2008
Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.
In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian sp atial field, we propose nonstationary and nonparametric Bayesian inference on the spatial dependence. Instead of estimating the quadratic (in the number of spatial locations) entries of the covariance matrix, the idea is to infer a near-linear number of nonzero entries in a sparse Cholesky factor of the precision matrix. Our prior assumptions are motivated by recent results on the exponential decay of the entries of this Cholesky factor for Matern-type covariances under a specific ordering scheme. Our methods are highly scalable and parallelizable. We conduct numerical comparisons and apply our methodology to climate-model output, enabling statistical emulation of an expensive physical model.
78 - Jisheng Dai , An Liu , 2019
This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization prior under the SBL framework. To overcome this challenge, we introduce a novel discretization enforcing prior to exploit the knowledge of the discrete nature of the signal-of-interest. By integrating the discretization enforcing prior into the SBL framework and applying the variational Bayesian inference (VBI) methodology, we devise an alternating update algorithm to jointly characterize the finite alphabet feature and reconstruct the unknown signal. When the measurement matrix is i.i.d. Gaussian per component, we further embed the generalized approximate message passing (GAMP) into the VBI-based method, so as to directly adopt the ideal prior and significantly reduce the computational burden. Simulation results demonstrate substantial performance improvement of the two proposed methods over existing schemes. Moreover, the GAMP-based variant outperforms the VBI-based method with an i.i.d. Gaussian measurement matrix but it fails to work for non i.i.d. Gaussian matrices.
The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly b eneficial in practical applications. In this paper, we present a Bayesian approach to signal reconstruction for 1-bit compressed sensing, and analyze its typical performance using statistical mechanics. Utilizing the replica method, we show that the Bayesian approach enables better reconstruction than the L1-norm minimization approach, asymptotically saturating the performance obtained when the non-zero entries positions of the signal are known. We also test a message passing algorithm for signal reconstruction on the basis of belief propagation. The results of numerical experiments are consistent with those of the theoretical analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا