ﻻ يوجد ملخص باللغة العربية
We report optical spectroscopic observations of a sample of 6 low-galactic latitude microquasar candidates selected by cross-identification of X-ray and radio point source catalogs for |b|<5 degrees. Two objects resulted to be of clear extragalactic origin, as an obvious cosmologic redshift has been measured from their emission lines. For the rest, none exhibits a clear stellar-like spectrum as would be expected for genuine Galactic microquasars. Their featureless spectra are consistent with being extragalactic in origin although two of them could be also highly reddened stars. The apparent non-confirmation of our candidates suggests that the population of persistent microquasar systems in the Galaxy is more rare than previously believed. If none of them is galactic, the upper limit to the space density of new Cygnus X-3-like microquasars within 15 kpc would be 1.1times10^{-12} per cubic pc. A similar upper limit for new LS 5039-like systems within 4 kpc is estimated to be 5.6times10^{-11} per cubic pc.
Recent studies of relativistic jet sources in the Galaxy, also known as microquasars, have been very useful in trying to understand the accretion/ejection processes that take place near compact objects. However, the number of sources involved in such
In an attempt to increase the number of known microquasars, Paredes et al. (2002) have presented a long-term project focused on the search for new objects of this type. They performed a cross-identification between X-ray and radio catalogs under very
We have used the field stars from the open cluster survey BOCCE, to study three low-latitude fields imaged with the Canada-France-Hawaii telescope (CFHT), with the aim of better understanding the Galactic structure in those directions. Due to the dee
We use near-infrared (J-K)-colours of bright 2MASS galaxies, measured within a 7-radius aperture, to calibrate the Schlegel et al. (1998) DIRBE/IRAS Galactic extinction map at low Galactic latitudes ($|b| < 10^{rm o}$). Using 3460 galaxies covering a
The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. We investigate two ROSAT All-Sky Survey fields of size 10 * 10 degrees each