ترغب بنشر مسار تعليمي؟ اضغط هنا

CII, CI, and CO in the massive star forming region W3 Main

65   0   0.0 ( 0 )
 نشر من قبل Carsten Kramer
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Kramer




اسأل ChatGPT حول البحث

We have used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. In combination with a map of singly ionized carbon (Howe et al. 1991), and FIR fine structure line data observed by ISO/LWS at the center position, these data sets allow to study in detail the physical structure of the photon dominated cloud interface regions (PDRs) where the occurance of carbon changes from CII to CI, and to CO.



قيم البحث

اقرأ أيضاً

We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e. W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and are located within the same large-scale environment, which allows us to study rotation and outflows as well as chemical properties in an evolutionary sense. While we find multiple mm continuum sources toward all regions, these three sub-regions exhibit different dynamical and chemical properties, which indicates that they are in different evolutionary stages. Even within each subregion, massive cores of different ages are found, e.g. in SMS2, sub-sources from the most evolved UCHII region to potential starless cores exist within 30 000 AU of each other. Outflows and rotational structures are found in SMS1 and SMS2. Evidence for interactions between the molecular cloud and the HII regions is found in the 13CO channel maps, which may indicate triggered star formation.
316 - A. Bik 2012
We present near-infrared JHKs imaging as well as K-band multi-object spectroscopy of the massive stellar content of W3 Main using LUCI at the LBT. We confirm 13 OB stars by their absorption line spectra in W3 Main and spectral types between O5V and B 4V have been found. Three massive Young Stellar Objects are identified by their emission line spectra and near-infrared excess. From our spectrophotometric analysis of the massive stars and the nature of their surrounding HII regions we derive the evolutionary sequence of W3 Main and we find an age spread of 2-3 Myr.
We present the results of deep and high-resolution (FWHM ~ 0.35) JHK NIR observations with the Subaru telescope, to search for very low mass young stellar objects (YSOs) in the W3 Main star-forming region. The NIR survey covers an area of ~ 2.6 arcmi n^2 with 10-sigma limiting magnitude exceeding 20 mag in the JHK bands. The survey is sensitive enough to provide unprecedented details in W3 IRS 5 region and reveals a census of the stellar population down to objects below the hydrogen-burning limit. We construct JHK color-color (CC) and J-H/J and H-K/K color-magnitude (CM) diagrams to identify very low luminosity YSOs and to estimate their masses. Based on these CC and CM diagrams, we identified a rich population of embedded YSO candidates with infrared excesses (Class I and Class II), associated with the W3 Main region. A large number of red sources (H-K > 2) have also been detected around W3 Main. We argue that these red stars are most probably pre-main-sequence (PMS) stars with intrinsic color excesses. Based on the comparison between theoretical evolutionary models of very low-mass PMS objects with the observed CM diagram, we find there exists a substantial substellar population in the observed region. The mass function (MF) does not show the presence of cutoff and sharp turnover around the substellar limit, at least at the hydrogen-burning limit. Furthermore, the MF slope indicates that the number ratio of young brown dwarfs and hydrogen-burning stars in the W3 Main is probably higher than those in Trapezium and IC 348. The presence of mass segregation, in the sense that relatively massive YSOs lie near the cluster center, is seen. The estimated dynamical evolution time indicates that the observed mass segregation in the W3 Main may be the imprint of the star formation process.
52 - C. Kramer 2004
We used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. The maps are centered on the luminous infrared source IR S5 for which we obtained ISO/LWS data comprising four high-J CO transitions, CII, and OI at 63 and 145 micron. In combination with a KAO map of integrated line intensities of CII (Howe et al. 1991), this data set allows to study the physical structure of the molecular cloud interface regions where the occurence of carbon is believed to change from C+ to C0, and to CO. The molecular gas in W3Main is warmed by the far ultraviolet (FUV) field created by more than a dozen OB stars. Detailed modelling shows that most of the observed line intensity ratios and absolute intensities are consistent with a clumpy photon dominated region (PDR) of a few hundred unresolved clumps per 0.84pc beam, filling between 3 and 9% of the volume, with a typical clump radius of 0.025pc (2.2), and typical mass of 0.44Msun. The high-excitation lines of CO stem from a 100-200K layer, as also the CI lines. The bulk of the gas mass is however at lower temperatures.
We investigate the large-scale structure of the interstellar medium (ISM) around the massive star cluster RCW38 in the [CII] 158 um line and polycyclic aromatic hydrocarbon (PAH) emission. We carried out [CII] line mapping of an area of ~30x15 for RC W~38 by a Fabry-Perot spectrometer on a 100 cm balloon-borne telescope with an angular resolution of ~1.5. We compared the [CII] intensity map with the PAH and dust emission maps obtained by the AKARI satellite. The [CII] emission shows a highly nonuniform distribution around the cluster, exhibiting the structure widely extended to the north and the east from the center. The [CII] intensity rapidly drops toward the southwest direction, where a CO cloud appears to dominate. We decompose the 3-160 um spectral energy distributions of the surrounding ISM structure into PAH as well as warm and cool dust components with the help of 2.5-5 um spectra. We find that the [CII] emission spatially corresponds to the PAH emission better than to the dust emission, confirming the relative importance of PAHs for photo-electric heating of gas in photo-dissociation regions. A naive interpretation based on our observational results indicates that molecular clouds associated with RCW38 are located both on the side of and behind the cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا