ﻻ يوجد ملخص باللغة العربية
In 2003.5 Eta Carinae was expected to undergo an X-ray eclipse (Damineli et al., 2000). In the framework of an international campaign to obtain multi-wavelength observations of this event, we have obtained optical CCD images of Eta Carinae. Here, we present the B, V, R, I, data of Eta Car obtained before and during the X-ray eclipse.
Eta Carinae was observed by FUSE through the LWRS (30 arcsec x30 arcsec) and HIRS (1.25 arcsec x 20 arcsec) apertures in March and April 2004. There are significant differences between the two spectra. About half of the LWRS flux appears to be due to
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s
We present a high-resolution image of $eta$~Car. Together with IR and visual observations of the central arcsecond, we use this to discuss the morphological structure of $eta$~Car on the different length scales. We identify three different structural
We present preliminary results of our analysis on the long-term variations observed in the optical spectrum of the LBV star Eta Carinae. Based on the hydrogen line profiles, we conclude that the physical parameters of the primary star did not change in the last 15 years.
We present critical, long-wavelength observations of Eta Carinae in the submillimetre using SCUBA on the JCMT at 850 and 450 um to confirm the presence of a large mass of warm dust around the central star. We fit a two-component blackbody to the IR-s