ﻻ يوجد ملخص باللغة العربية
We demonstrate that the combination of Zeeman, polarimetry and ion-to-neutral molecular line width ratio measurements permits the determination of the magnitude and orientation of the magnetic field in the weakly ionized parts of molecular clouds. Zeeman measurements provide the strength of the magnetic field along the line of sight, polarimetry measurements give the field orientation in the plane of the sky and the ion-to-neutral molecular line width ratio determines the angle between the magnetic field and the line of sight. We apply the technique to the M17 star-forming region using a HERTZ 350 um polarimetry map and HCO+-to-HCN molecular line width ratios to provide the first three-dimensional view of the magnetic field in M17.
The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determins the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport du
We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formatio
Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropica
We statistically evaluate the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic du
We present three numerical simulations of randomly driven, isothermal, non-magnetic, self-gravitating turbulence with different rms Mach numbers Ms and physical sizes L, but approximately the same value of the virial parameter, alpha approx 1.2. We o