ﻻ يوجد ملخص باللغة العربية
We report a detailed abundance analysis for HE0107-5240, a halo giant with [Fe/H]_NLTE=-5.3. This star was discovered in the course of follow-up medium-resolution spectroscopy of extremely metal-poor candidates selected from the digitized Hamburg/ESO objective-prism survey. On the basis of high-resolution VLT/UVES spectra, we derive abundances for 8 elements (C, N, Na, Mg, Ca, Ti, Fe, and Ni), and upper limits for another 12 elements. A plane-parallel LTE model atmosphere has been specifically tailored for the chemical composition of {he}. Scenarios for the origin of the abundance pattern observed in the star are discussed. We argue that HE0107-5240 is most likely not a post-AGB star, and that the extremely low abundances of the iron-peak, and other elements, are not due to selective dust depletion. The abundance pattern of HE0107-5240 can be explained by pre-enrichment from a zero-metallicity type-II supernova of 20-25M_Sun, plus either self-enrichment with C and N, or production of these elements in the AGB phase of a formerly more massive companion, which is now a white dwarf. However, significant radial velocity variations have not been detected within the 52 days covered by our moderate-and high-resolution spectra. Alternatively, the abundance pattern can be explained by enrichment of the gas cloud from which HE0107-5240 formed by a 25M_Sun first-generation star exploding as a subluminous SNII, as proposed by Umeda & Nomoto (2003). We discuss consequences of the existence of HE0107-5240 for low-mass star formation in extremely metal-poor environments, and for currently ongoing and future searches for the most metal-poor stars in the Galaxy.
We have determined the oxygen abundance of HE0107-5240 from UV-OH lines detected in VLT/UVES spectra. Using a plane-parallel LTE model atmosphere, we derive [O/Fe] = +2.4, and a similar analysis of CD -38 245 yields [O/Fe] = +1.0. We estimate systema
We discuss the origin of HE0107-5240 which is the most metal poor star yet observed ([Fe/H] = -5.3). Its discovery has an important bearing on the question of the observability of first generation stars. In common with other metal-poor stars (-4 < [F
We present long-slit observations in the optical and near infrared of fourteen HII regions in the spiral galaxies: NGC 628, NGC 925, NGC 1232 and NGC 1637, all of them reported to have solar or oversolar abundances according to empirical calibrations
We provide detailed abundance analyses of 8 candidate super-metal-rich stars. Five of them are confirmed to have [Fe/H] > 0.2 dex, the generally-accepted limit for super-metal-richness. Furthermore, we derive abundances of several elements and find t
In order to investigate the origin and the structure of the low velocity, chemically rich clumps observed along the lobes of low- and intermediate-mass outflows, we construct a detailed model of the S1 clump along the CB3 outflow. We use a time-depen