ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Molecular-Line Emission from Circumstellar Disks

50   0   0.0 ( 0 )
 نشر من قبل Michiel R. Hogerheijde
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absorption) line spectrum based on models for the physical and chemical structure of protoplanetary disks. Four examples of recent research illutrate these techniques in practice: matching resolved molecular-line emission from the disk around LkCa15 with theoertical models for the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation into the disk, and the effect on the HCN/CN ratio; far-infrared CO line emission from a superheated disk surface layer; and inward motions in the disk around L1489 IRS.



قيم البحث

اقرأ أيضاً

We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 My r old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of h2 to study the evolution of the gas in the inner disk. We find that the h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting h2 in the disk, the fact that the non-accreting sources show no h2 emission implies that the h2 gas in the inner disk has dissipated in the non-accreting sources, although dust (and possibly gas) remains at larger radii. Using the flux at 1600 {AA}, we estimate that the column density of h2 left in the inner regions of the debris disks in our sample is less than ~ 3x10^-6 g cm^-2, nine orders of magnitude below the surface density of the minimum mass solar nebula at 1 AU.
We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the VLT/CRIRES and Keck/NIRSPEC spectrographs, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengt hs. Using advanced data reduction techniques we achieve a dynamic range with respect to the disk continuum of ~500 at 3 microns, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 degrees, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature LTE slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).
120 - Mark R. Krumholz 2007
We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in seve ral representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels ~10 km s^-1 wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s^-1, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.
Circumstellar disks provide the material reservoir for the growth of young stars and for planet formation. We combine a high-level radiative transfer program with a thermal-chemical model of a typical T Tauri star disk to investigate the diagnostic p otential of the far-infrared lines of water for probing disk structure. We discuss the observability of pure rotational H2O lines with the Herschel Space Observatory, specifically the residual gas where water is mainly frozen out. We find that measuring both the line profile of the ground 110-101 ortho-H2O transition and the ratio of this line to the 312-303 and 221-212 line can provide information on the gas phase water between 5-100 AU, but not on the snow line which is expected to occur at smaller radii.
We present HI line profiles for various models of circumstellar shells around red giants. In the calculations we take into account the effect of the background at 21 cm, and show that in some circumstances it may have an important effect on the shape and intensity of the observed line profiles. We show that self-absorption should also be considered depending on the mass loss rate and the temperature reached by circumstellar gas. HI emission from circumstellar shells has been mostly reported from stars with mass loss rates around 10$^{-7}$ solar masses per year. We discuss the possible reasons for the non detection of many sources with larger mass loss rates that are hallmarks of the end of the AGB phase. Although radiative transfer effects may weaken the line emission, they cannot alone account for this effect. Therefore, it seems likely that molecular hydrogen, rather than atomic hydrogen, dominates the composition of matter expelled by stars at the end of their evolution on the Asymptotic Giant Branch. However sensitive HI observations can still yield important information on the kinematics and physical properties of the circumstellar material at large distances from central stars with heavy mass loss, despite the low abundance of atomic hydrogen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا