ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Colors of Submillimeter-Selected Galaxies

58   0   0.0 ( 0 )
 نشر من قبل David T. Frayer
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. T. Frayer




اسأل ChatGPT حول البحث

We report on deep near-infrared (NIR) observations of submillimeter-selected galaxies (SMGs) with the Near Infrared Camera (NIRC) on the Keck I telescope. We have identified K-band candidate counterparts for 12 out of 15 sources in the SCUBA Cluster Lens Survey. Three SMGs remain non-detections with K-band limits of K>23 mag, corrected for lensing. Compensating for lensing we find a median magnitude of K=22+/-1 mag for the SMG population, but the range of NIR flux densities spans more than a factor of 400. For SMGs with confirmed counterparts based on accurate positions from radio, CO, and/or millimeter continuum interferometric observations, the median NIR color is J-K=2.6+/-0.6 mag. The NIR-bright SMGs (K<19 mag) have colors of J-K =~ 2 mag, while the faint SMGs tend to be extremely red in the NIR (J-K>3 mag). We argue that a color selection criterion of J-K>~3 mag can be used to help identify counterparts of SMGs that are undetected at optical and radio wavelengths. The number density of sources with J-K>3 mag is 5 arcmin^{-2} at K<22.5 mag, greater than that of SMGs with S(850um)>2 mJy. It is not clear if the excess represents less luminous infrared-bright galaxies with S(850um)<~2 mJy, or if the faint extremely red NIR galaxies represent a different population of sources that could be spatially related to the SMGs.



قيم البحث

اقرأ أيضاً

We present results of near-infrared photometry (J, H, K_S) for a sample of active galactic nuclei (AGNs) obtained from hard X-ray surveys with ASCA. The sample covers the AGNs at z=0.1-1 with L(2-10keV)=10^42-10^46 erg/s with very high completeness. The fraction of red (J-K_S>2 mag) AGNs in our sample is 2(+-1)%, which is comparable to that for optically- or UV-selected quasi-stellar objects (QSOs, i.e. luminous AGNs). The number of red AGNs found in our sample is also consistent with that expected from the surface density of red AGNs found in 2MASS by Cutri et al. (2001). We find that the anomalously-small dust-to-gas ratios in circumnuclear gas, which is seen in some AGNs with Seyfert-class luminosity, also occur in the QSOs (AGNs with luminosity of L(2-10keV) > 10^44.5 erg/s). For all the QSOs with an X-ray absorption of N_H > 10^22 /cm2 in our sample, the values of A_V/N_H are smaller than the Galactic value by a factor of 5 to 100. Since a fraction of this population among the QSOs in our sample is about 30%, such fraction of optical/UV-selected type 1 QSOs known to date may show type 2 nature in X-ray.
We present the results of deep near-infrared spectroscopy of seven submillimetre-selected galaxies from the SCUBA 8-mJy and CUDSS surveys. These galaxies were selected because they are too faint to be accessible to optical spectrographs on large tele scopes. We obtain a spectroscopic redshift for one object, and likely redshifts for two more, based on a combination of marginal emission line detections and the shape of the continuum. All three redshifts broadly agree with estimates from their radio/submm spectral energy distributions. From the emission line strengths of these objects, we infer star formation rates of 10-25 Msun/yr, while the lack of detections in the other objects imply even lower rates. By comparing our results with those of other authors, we conclude it is likely that the vast majority (more than 90 per cent) of the star formation in these objects is completely extinguished at rest-frame optical wavelengths, and the emission lines originate in a relatively unobscured region. Finally, we look at future prospects for making spectroscopic redshift determinations of submm galaxies.
Using detailed spectral energy distribution fits we present evidence that submillimeter- and radio-bright gamma-ray burst host galaxies are hotter counterparts to submillimeter galaxies. This hypothesis makes them of special interest since hotter sub mm galaxies are difficult to find and are believed to contribute significantly to the star formation history of the Universe.
145 - Joon Hyeop Lee 2010
A near-infrared (NIR; 2.5 - 4.5 micron) spectroscopic survey of SDSS(Sloan Digital Sky Survey)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star- formation(SF)/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 micron PAH emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(Simple Stellar Population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent star formation or AGN activity and the BEGs have a clear feature of PAH emission, the evidence of current SF. BEGs show NIR features different from those of ULIRGs, from which we do not find any clear relationship between BEGs and ULIRGs. We find that Seyfert BEGs have more active SF than LINER BEGs, in spite of the fact that Seyferts show stronger AGN activity than LINERs. One possible scenario satisfying both our results and the AGN feedback is that SF, Seyfert and LINER BEGs form an evolutionary sequence: SF - Seyfert - LINER.
We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of WISE-selected, hyperluminous galaxies, so called W1W2-dropout galaxies. This is a rare (~ 1000 all-sky) population of galaxies at high redshift (peaks at z=2-3), that a re faint or undetected by WISE at 3.4 and 4.6 um, yet are clearly detected at 12 and 22 um. The optical spectra of most of these galaxies show significant AGN activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350 to 850 um, with 9 detections; and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 um, as well as optical spectra of 12 targets are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submm ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10^{13} Lsun. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the Universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا