ﻻ يوجد ملخص باللغة العربية
The Cepheid Period-Luminosity relation is unquestionably one of the most powerful tools at our disposal for determining the extragalactic distance scale. While significant progress has been made in the past few years towards its understanding and characterisation, both on the observational (e.g. the HST Key Project) and theoretical (e.g. non-linear pulsation models, non-LTE atmospheres etc.) sides, the debate on the influence that chemical composition may have on the Period-Luminosity relation is still unsettled. Current estimates lead to differences in the distance as large as 15%, effectively limiting the accuracy of Cepheids as distance indicators. To further tackle this problem, we have obtained high resolution spectra of a large sample of Cepheids in our Galaxy and the Magellanic Clouds. The superb quality of the data allow us to probe the detailed effects of chemical composition (alpha, iron-group, and heavy elements) over more than a factor of ten in metallicity. Here, we present the first preliminary results of the analysis of iron abundances in a sub-sample of Cepheids.
We present an analysis of the stellar kinematics of the Large Magellanic Cloud based on ~5900 new and existing velocities of massive red supergiants, oxygen-rich and carbon-rich AGB stars, and other giants. After correcting the line-of-sight velociti
Based on their stellar parameters and the presence of a mid-IR excess due to circumstellar dust, RV Tauri stars have been classified as post-AGB stars. Our recent studies, however, reveal diverse SEDs among RV Tauri stars, suggesting they may occupy
Using a cosmological hydrodynamical simulation of a galaxy of similar mass to the Large Magellanic Cloud (LMC), we examine the predicted characteristics of its lowest metallicity populations. In particular, we emphasise the spatial distributions of f
We present a measurement of the systemic proper motion of the Small Magellanic Cloud (SMC) made using the Advanced Camera for Surveys (ACS) on the textit{Hubble Space Telescope} (textit{HST}). We tracked the SMCs motion relative to 4 background QSOs
We present an analysis of the spatial distribution of various stellar populations within the Large and Small Magellanic Clouds. We use optically selected stellar samples with mean ages between ~9 and ~1000 Myr, and existing stellar cluster catalogues