ﻻ يوجد ملخص باللغة العربية
We emphasise the importance of the gas entropy in studying the evolution of cluster gas evolving under the influence of radiative cooling. On this basis, we develop an analytical model for this evolution. We then show that the assumptions needed for such a model are consistent with a numerical solution of the same equations. We postulate that the passive cooling phase ends when the central gas temperature falls to very low values. It follows a phase during which an unspecified mechanism heats the cluster gas. We show that in such a scenario the small number of clusters containing gas with temperatures below about 1 keV is simply a consequence of the radiative cooling.
The X-ray properties of a relaxed cluster of galaxies are determined primarily by its gravitational potential well and the entropy distribution of its intracluster gas. That entropy distribution reflects both the accretion history of the cluster and
We investigate temperature and entropy profiles of 13 nearby cooling flow clusters observed with the EPIC cameras of XMM-Newton. When normalized and scaled by the virial radius the temperature profiles turn out to be remarkably similar. At large radi
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling fl
The goal of this work is to study the incidence rate of cooling flows in the high redshift clusters using Chandra observations of z>0.5 objects from a new large, X-ray selected catalog. We find that only a very small fraction of high-z objects have c
The dust destruction timescales in the cores of clusters of galaxies are relatively short given their high central gas densities. However, substantial mid-infrared and sub-mm emission has been detected in many brightest cluster galaxies. In this lett