ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton Observations of PSR B1706-44

87   0   0.0 ( 0 )
 نشر من قبل Katherine E. McGowan
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the XMM-Newton observations of the young, 102 ms pulsar PSR B1706-44. We have found that both a blackbody plus power-law and a magnetized atmospheric model plus power-law provide an excellent fit to the EPIC spectra. The two scenarios are therefore indistinguishable on a statistical basis, although we are inclined to prefer the latter on physical grounds. In this case, assuming a source distance of ~2.3 kpc, the size of the region responsible for the thermal emission is R~13 km, compatible with the surface of a neutron star. A comparison of the surface temperature of PSR B1706-44 obtained from this fit with cooling curves favor a medium mass neutron star with M~1.45 solar masses or M~1.59 solar masses, depending on two different models of proton superfluidity in the interior. The large collecting area of XMM-Newton allows us to resolve a substructure in the broad soft X-ray modulation detected by Chandra, revealing the presence of two separate peaks with pulsed fractions of 7 +/- 4% and 15 +/- 3%, respectively.



قيم البحث

اقرأ أيضاً

295 - T. Mineo , E.Massaro , G.Cusumano 2002
We report the results of the observations of the three gamma-ray pulsars PSR B0656+14, PSR B1055-52 and PSR B1706-44 performed with BeppoSAX. We detected a pulsed emission only for PSR B1055-52: in the range 0.1-6.5 keV the pulse profile is sinusoida l and the statistical significance is 4.5 sigma. The pulsed fraction was estimated 0.64+/-0.17. This pulsation was detected also at energies greater than 2.5 keV suggesting either a non-thermal origin or a quite high temperature region on the neutron star surface. Spectral analysis showed that only the X-ray spectrum of PSR B1706-44 can be fitted by a single power-law component, while that of PSR B1055-52 requires also a blackbody component (kT = 0.075 keV) and that of PSR B0656+14 two blackbody components (kT_1 = 0.059, kT_2 = 0.12 keV).
The energetic pulsar PSR B1706-44 and the adjacent supernova remnant (SNR) candidate G 343.1-2.3 were observed by H.E.S.S. during a dedicated observational campaign in 2007. A new source of very-high-energy (VHE; E > 100 GeV) gamma-ray emission, HESS J1708-443, was discovered with its centroid at RA(J2000) = 17h08m10s and Dec(J2000) = -44d21, with a statistical error of 3 arcmin on each axis. The VHE gamma-ray source is significantly more extended than the H.E.S.S. point-spread function, with an intrinsic Gaussian width of 0.29 +/- 0.04 deg. Its energy spectrum can be described by a power law with a photon index Gamma = 2.0 +/- 0.1 (stat) +/- 0.2 (sys). The integral flux measured between 1-10 TeV is ~17% of the Crab Nebula flux in the same energy range. The possible associations with PSR B1706-44 and SNR G343.1-2.3 are discussed.
We present some arguments in support of the association of the pulsar PSR B1706-44 with the supernova remnant G343.1-2.3, based on the idea that these objects could be the result of a supernova explosion within a mushroom-like cavity (created by the supernova progenitor wind breaking out of the parent molecular cloud). We suggest that in addition to the known bright half of G343.1-2.3 there should exist a more extended and weaker component, such that the actual shape of G343.1-2.3 is similar to that of the well-known SNR VRO 42.05.01. We have found such a component in archival radio data.
We report on the XMM-Newton observations of the 143 ms pulsar PSR J0538+2817. We present evidence for the first detections of pulsed X-rays from the source at a frequency which is consistent with the predicted radio frequency. The pulse profile is br oad and asymmetric, with a pulse fraction of 18 +/- 3%. We find that the spectrum of the source is well-fit with a blackbody with T^{infty} = (2.12^{+0.04}_{-0.03}) x 10^6 K and N_{H} = 2.5 x 10^21 cm^{-2}. The radius determined from the model fit of 1.68 +/- 0.05 km suggests that the emission is from a heated polar cap. A fit to the spectrum with an atmospheric model reduces the inferred temperature and hence increases the radius of the emitting region, however the pulsar distance determined from the fit is then smaller than the dispersion distance.
64 - B. J. Wilkes 2005
XMM-Newton spectra of five red, 2MASS AGN, selected from a sample observed by Chandra to be relatively X-ray bright and to cover a range of hardness ratios, confirm the presence of substantial absorbing material in three sources with optical classifi cations ranging from Type 1 to Type 2. A flat (hard), power law continuum is observed in the other two. The combination of X-ray absorption and broad optical emission lines suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this may arise in an extended region of ionised gas, perhaps linked with the polarised (scattered) optical light present in these sources. The spectral complexity revealed by XMM-Newton emphasizes the limitations of the low S/N chandra data. The new results strengthen our earlier conclusions that the observed X-ray continua of red AGN are unusually hard at energies >2 keV. Their observed spectra are consistent with contributing significantly to the missing hard/absorbed population of the Cosmic X-ray Background (CXRB) although their intrinsic power law slopes are typical of broad-line (Type 1) AGN (Gamma ~1.7-1.9). This suggests that the missing X-ray-absorbed CXRB population may include Type 1 AGN/QSOs in addition to the Type 2 AGN generally assumed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا