ﻻ يوجد ملخص باللغة العربية
The current system of stellar magnitudes first introduced by Hipparchus was strictly defined by Norman Robert Pogson in 1856. He based his system on Ptolemys star catalogue `Almagest, recorded in about 137 A.D., and defined the magnitude-intensity relationship on a logarithmic scale. Stellar magnitudes observed with the naked eye recorded in seven old star catalogues were analyzed in order to examine the visual magnitude systems. Despite that psychophysists have proposed that humans sensitivities are on a power-law scale, it is shown that the degree of agreement is far better for a logarithmic magnitude than a power-law magnitude. It is also found that light ratios in each star catalogue nearly equal to 2.512, excluding the brightest (1st) and the dimmest (6th and dimmer) stars being unsuitable for the examination. It means that the visual magnitudes in old star catalogues fully agree with Pogsons logarithmic scale.
Historical star magnitudes from catalogues by Ptolemy (137 AD), as-Sufi (964) and Tycho Brahe (1602/27) are converted to the Johnson V-mag scale and compared to modern day values from the HIPPARCOS catalogue. The deviations (or errors) are tested for
We investigate the old star clusters in the sample of cluster candidates from Froebrich, Scholz & Raftery 2007 -- the FSR list. Based on photometry from the 2-Micron All Sky Survey we generated decontaminated colour-magnitude and colour-colour diagra
If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and
Low rank matrix factorisation is often used in recommender systems as a way of extracting latent features. When dealing with large and sparse datasets, traditional recommendation algorithms face the problem of acquiring large, unrestrained, fluctuati
One of the key science goals for a diffraction limited imager on an Extremely Large Telescope (ELT) is the resolution of individual stars down to faint limits in distant galaxies. The aim of this study is to test the proposed capabilities of a multi-