ﻻ يوجد ملخص باللغة العربية
We analyze OGLE-2003-BLG-262, a relatively short, t_E=12.5+-0.1day, microlensing event generated by a point-mass lens transiting the face of a K giant source in the Galactic bulge. We use the resulting finite-source effects to measure the angular Einstein radius, theta_E=195+-17muas, and so constrain the lens mass to the full-width half-maximum interval 0.08 < M/M_sun < 0.54. The lens-source relative proper motion is mu_rel = 27+-2 km/s/kpc. Both values are typical of what is expected for lenses detected toward the bulge. Despite the short duration of the event, we detect marginal evidence for a parallax asymmetry, but argue that this is more likely to be induced by acceleration of the source, a binary lens, or possibly by statistical fluctuations. Although OGLE-2003-BLG-262 is only the second published event to date in which the lens transits the source, such events will become more common with the new OGLE-III survey in place. We therefore give a detailed account of the analysis of this event to facilitate the study of future events of this type.
We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event a short duration (~7 days) low amplitude deviation in the light curve due a single lens profile was observed in both the MOA and OGLE survey ob
Microlensing is the only known direct method to measure the masses of stars that lack visible companions. In terms of microlensing observables, the mass is given by M=(c^2/4G)tilde r_E theta_E and so requires the measurement of both the angular Einst
We present the analysis of the caustic-crossing binary microlensing event OGLE-2017-BLG-0039. Thanks to the very long duration of the event, with an event time scale $t_{rm E}sim 130$ days, the microlens parallax is precisely measured despite its sma
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find th
We analyze the microlensing event OGLE-2019-BLG-0304, whose light curve exhibits two distinctive features: a deviation in the peak region and a second bump appearing $sim 61$~days after the main peak. Although a binary-lens model can explain the over