ترغب بنشر مسار تعليمي؟ اضغط هنا

OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens

79   0   0.0 ( 0 )
 نشر من قبل Jaiyul Yoo
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jaiyul Yoo




اسأل ChatGPT حول البحث

We analyze OGLE-2003-BLG-262, a relatively short, t_E=12.5+-0.1day, microlensing event generated by a point-mass lens transiting the face of a K giant source in the Galactic bulge. We use the resulting finite-source effects to measure the angular Einstein radius, theta_E=195+-17muas, and so constrain the lens mass to the full-width half-maximum interval 0.08 < M/M_sun < 0.54. The lens-source relative proper motion is mu_rel = 27+-2 km/s/kpc. Both values are typical of what is expected for lenses detected toward the bulge. Despite the short duration of the event, we detect marginal evidence for a parallax asymmetry, but argue that this is more likely to be induced by acceleration of the source, a binary lens, or possibly by statistical fluctuations. Although OGLE-2003-BLG-262 is only the second published event to date in which the lens transits the source, such events will become more common with the new OGLE-III survey in place. We therefore give a detailed account of the analysis of this event to facilitate the study of future events of this type.



قيم البحث

اقرأ أيضاً

We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event a short duration (~7 days) low amplitude deviation in the light curve due a single lens profile was observed in both the MOA and OGLE survey ob servations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 +/- (11, 07) for the lensing system. If the lens system comprises a main sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.
77 - Guangfei Jiang 2004
Microlensing is the only known direct method to measure the masses of stars that lack visible companions. In terms of microlensing observables, the mass is given by M=(c^2/4G)tilde r_E theta_E and so requires the measurement of both the angular Einst ein radius, theta_E, and the projected Einstein radius, tilde r_E. Simultaneous measurement of these two parameters is extremely rare. Here we analyze OGLE-2003-BLG-238, a spectacularly bright (I_min=10.3), high-magnification (A_max = 170) microlensing event. Pronounced finite source effects permit a measurement of theta_E = 650 uas. Although the timescale of the event is only t_E = 38 days, one can still obtain weak constraints on the microlens parallax: 4.4 AU < tilde r_E < 18 AU at the 1 sigma level. Together these two parameter measurements yield a range for the lens mass of 0.36 M_sun < M < 1.48 M_sun. As was the case for MACHO-LMC-5, the only other single star (apart from the Sun) whose mass has been determined from its gravitational effects, this estimate is rather crude. It does, however, demonstrate the viability of the technique. We also discuss future prospects for single-lens mass measurements.
94 - C. Han , Y. K. Jung , A. Udalski 2018
We present the analysis of the caustic-crossing binary microlensing event OGLE-2017-BLG-0039. Thanks to the very long duration of the event, with an event time scale $t_{rm E}sim 130$ days, the microlens parallax is precisely measured despite its sma ll value of $piesim 0.06$. The analysis of the well-resolved caustic crossings during both the source stars entrance and exit of the caustic yields the angular Einstein radius $thetaesim 0.6$~mas. The measured $pie$ and $thetae$ indicate that the lens is a binary composed of two stars with masses $sim 1.0~M_odot$ and $sim 0.15~M_odot$, and it is located at a distance of $sim 6$ kpc. From the color and brightness of the lens estimated from the determined lens mass and distance, it is expected that $sim 2/3$ of the $I$-band blended flux comes from the lens. Therefore, the event is a rare case of a bright lens event for which high-resolution follow-up observations can confirm the nature of the lens.
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find th at the multiple-peak feature provides a very tight constraint on the microlens-parallax effect, enabling us to precisely measure the microlens parallax $pi_{rm E}$. All the peaks are densely and continuously covered from high-cadence survey observations using globally located telescopes and the analysis of the peaks leads to the precise measurement of the angular Einstein radius $theta_{rm E}$. From the combination of the measured $pi_{rm E}$ and $theta_{rm E}$, we determine the physical parameters of the lens. It is found that the lens is a binary composed of two M dwarfs with masses $M_1=0.18pm 0.01 M_odot$ and $M_2=0.16pm 0.01 M_odot$ located at a distance $D_{rm L}= 1.35pm 0.09 {rm kpc}$. According to the estimated lens mass and distance, the flux from the lens comprises an important fraction, $sim 25%$, of the blended flux. The bright nature of the lens combined with the high relative lens-source motion, $mu=6.94pm 0.50 {rm mas} {rm yr}^{-1}$, suggests that the lens can be directly observed from future high-resolution follow-up observations.
We analyze the microlensing event OGLE-2019-BLG-0304, whose light curve exhibits two distinctive features: a deviation in the peak region and a second bump appearing $sim 61$~days after the main peak. Although a binary-lens model can explain the over all features, it leaves subtle but noticeable residuals in the peak region. We find that the residuals can be explained by the presence of either a planetary companion located close to the primary of the binary lens (3L1S model) or an additional close companion to the source (2L2S model). Although the 3L1S model is favored over the 2L2S model, with $Deltachi^2sim 8$, securely resolving the degeneracy between the two models is difficult with the currently available photometric data. According to the 3L1S interpretation, the lens is a planetary system, in which a planet with a mass $0.51^{+0.51}_{-0.23}~M_{rm J}$ is in an S-type orbit around a binary composed of stars with masses $0.27^{+0.27}_{-0.12}~M_odot$ and $0.10^{+0.10}_{-0.04}~M_odot$. According to the 2L2S interpretation, on the other hand, the source is composed of G- and K-type giant stars, and the lens is composed of a low-mass M dwarf and a brown dwarf with masses $0.12^{+0.12}_{-0.05}~M_odot$ and $0.045^{+0.045}_{-.019}~M_odot$, respectively. The event illustrates the need for through model testing in the interpretation of lensing events with complex features in light curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا