ﻻ يوجد ملخص باللغة العربية
We have used previously published observations of the CO emission from the Antennae (NGC 4038/39) to study the detailed properties of the super giant molecular complexes with the goal of understanding the formation of young massive star clusters. Over a mass range from 5E6 to 9E8 solar masses, the molecular complexes follow a power-law mass function with a slope of -1.4 +/- 0.1, which is very similar to the slope seen at lower masses in molecular clouds and cloud cores in the Galaxy. Compared to the spiral galaxy M51, which has a similar surface density and total mass of molecular gas, the Antennae contain clouds that are an order of magnitude more massive. Many of the youngest star clusters lie in the gas-rich overlap region, where extinctions as high as Av~100 imply that the clusters must lie in front of the gas. Combining data on the young clusters, thermal and nonthermal radio sources, and the molecular gas suggests that young massive clusters could have formed at a constant rate in the Antennae over the last 160 Myr and that sufficient gas exists to sustain this cluster formation rate well into the future. However, this conclusion requires that a very high fraction of the massive clusters that form initially in the Antennae do not survive as long as 100 Myr. Finally, we compare our data with two models for massive star cluster formation and conclude that the model where young massive star clusters form from dense cores within the observed super giant molecular complexes is most consistent with our current understanding of this merging system. (abbreviated)
(abridged) We report here a factor of 5.7 higher total CO flux in Arp~244 (the ``Antennae galaxies) than that previously accepted in the literature (thus a total molecular gas mass of 1.5x10$^{10}$ Msun), based on our fully sampled CO(1-0) observatio
The formation mechanism of super star clusters (SSCs), a present-day analog of the ancient globulars, still remains elusive. The major merger, the Antennae galaxies is forming SSCs and is one of the primary targets to test the cluster formation mecha
We report on a multi-wavelength study of the relationship between young star clusters in the Antennae galaxies (NGC 4038/9) and their interstellar environment, with the goal of understanding the formation and feedback effects of star clusters in merg
We study the relationship between dense gas and star formation in the Antennae galaxies by comparing ALMA observations of dense gas tracers (HCN, HCO$^+$, and HNC $mathrm{J}=1-0$) to the total infrared luminosity ($mathrm{L_{TIR}}$) calculated using
We introduce a method to relate a possible truncation of the star cluster mass function at the high mass end to the shape of the cluster luminosity function (LF). We compare the observed LFs of five galaxies containing young star clusters with synthe