ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

82   0   0.0 ( 0 )
 نشر من قبل Erik Rosolowsky
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13 diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.



قيم البحث

اقرأ أيضاً

183 - F. Bigiel , A. Bolatto , A. Leroy 2010
We use high spatial resolution (~7pc) CARMA observations to derive detailed properties for 8 giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ~0.5 optical radii (r25), in the Local Group spiral galaxy M33. At this radius, molecular gas fraction, dust-to-gas ratio and metallicity are much lower than in the inner part of M33 or in a typical spiral galaxy. This allows us to probe the impact of environment on GMC properties by comparing our measurements to previous data from the inner disk of M33, the Milky Way and other nearby galaxies. The outer disk clouds roughly fall on the size-linewidth relation defined by extragalactic GMCs, but are slightly displaced from the luminosity-virial mass relation in the sense of having high CO luminosity compared to the inferred virial mass. This implies a different CO-to-H2 conversion factor, which is on average a factor of two lower than the inner disk and the extragalactic average. We attribute this to significantly higher measured brightness temperatures of the outer disk clouds compared to the ancillary sample of GMCs, which is likely an effect of enhanced radiation levels due to massive star formation in the vicinity of our target field. Apart from brightness temperature, the properties we determine for the outer disk GMCs in M33 do not differ significantly from those of our comparison sample. In particular, the combined sample of inner and outer disk M33 clouds covers roughly the same range in size, linewidth, virial mass and CO luminosity than the sample of Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find even the brightest outer disk clouds to be smaller than most of their inner disk counterparts. This may be due to incomplete sampling or a potentially steeper cloud mass function at larger radii.
141 - N. Imara , F. Bigiel , L. Blitz 2011
We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (HI) with which they are associated. High-resolution VLA observations are used to measure the properties of HI in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high-surface density atomic gas. The mean HI surface density in the vicinity of GMCs is 10 M_sol/pc^2 and tends to increase with GMC mass as Sigma_HI ~ M_GMC^0.27. 39 of the 45 HI regions surrounding GMCs have linear velocity gradients of ~0.05 km/s/pc. If the linear gradients previously observed in the GMCs result from rotation, then 53% are counterrotating with respect to the local HI. If the linear gradients in these local HI regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km/s/pc, suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.
We carried out deep searches for CO line emission in the outer disk of M33, at R>7 kpc, and examined the dynamical conditions that can explain variations in the mass distribution of the molecular cloud throughout the disk of M33. We used the IRAM-30~ m telescope to search for CO lines in the outer disk toward 12 faint mid-infrared (MIR) selected sources and in an area of the southern outer disk hosting MA1, a bright HII region. We detect narrow CO lines at the location of two MIR sources at galactocentric distances of about 8 kpc that are associated with low-mass young stellar clusters, and at four locations in the proximity of MA1. The paucity of CO lines at the location of weak MIR-selected sources probably arises because most of them are not star-forming sites in M33, but background sources. Although very uncertain, the total molecular mass of the detected clouds around MA1 is lower than expected given the stellar mass of the cluster, because dispersal of the molecular gas is taking place as the HII region expands. The mean mass of the giant molecular clouds (GMCs) in M33 decreases radially by a factor 2 from the center out to 4 kpc, then it stays constant until it drops at R>7 kpc. We suggest that GMCs become more massive toward the center because of the fast rotation of the disk, which drives mass growth by coalescence of smaller condensations as they cross the arms. The analysis of both HI and CO spectral data gives the consistent result that corotation of the two main arms in this galaxy is at a radius of 4.7+-0.3 kpc, and spiral shock waves become subsonic beyond 3.9 kpc. Perturbations are quenched beyond 6.5 kpc, where CO lines have been detected only around sporadic condensations associated with UV and MIR emission.
We report molecular line and continuum observations toward one of the most massive giant molecular clouds (GMCs), GMC-16, in M33 using ALMA with an angular resolution of 0$$44 $times$ 0$$27 ($sim$2 pc $times$ 1 pc). We have found that the GMC is comp osed of several filamentary structures in $^{12}$CO and $^{13}$CO ($J$ = 2-1). The typical length, width, and total mass are $sim$50-70 pc, $sim$5-6 pc, and $sim$10$^{5}$ $M_{odot}$, respectively, which are consistent with those of giant molecular filaments (GMFs) as seen in the Galactic GMCs. The elongations of the GMFs are roughly perpendicular to the direction of the galaxys rotation, and several H$;${sc ii} regions are located at the downstream side relative to the filaments with an offset of $sim$10-20 pc. These observational results indicate that the GMFs are considered to be produced by a galactic spiral shock. The 1.3 mm continuum and C$^{18}$O ($J$ = 2-1) observations detected a dense clump with the size of $sim$2 pc at the intersection of several filamentary clouds, which is referred to as the $$hub filament,$$ possibly formed by a cloud-cloud collision. A strong candidate for protostellar outflow in M33 has also been identified at the center of the clump. We have successfully resolved the parsec-scale local star formation activity in which the galactic scale kinematics may induce the formation of the parental filamentary clouds.
150 - N. Imara , L. Blitz 2011
We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the mole cular clouds and surrounding atomic gas. The maps are made from high-resolution 13CO observations and 21-cm observations from the Leiden/Argentine/Bonn Galactic HI Survey. We find that (i) the atomic gas associated with each molecular cloud has a substantial velocity gradient---ranging within 0.02 to 0.07 km/s/pc---whether or not the molecular cloud itself has a substantial linear gradient (ii) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding HI by a factor of 1-6. (iii) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated---by as much as 130 degrees in the case of the Rosette Molecular Cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا