ترغب بنشر مسار تعليمي؟ اضغط هنا

M Dwarfs from Hubble Space Telescope Star Counts. V. The I-band Luminosity Function

85   0   0.0 ( 0 )
 نشر من قبل Zheng Zheng
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zheng Zheng




اسأل ChatGPT حول البحث

We derive the disk I-band luminosity function from the Zheng et al. sample of ~1400 disk M dwarfs observed with the Hubble Space Telescope. We adopt a Galactic-height-dependent color-magnitude relation to account for the metallicity gradient above the Galactic plane. The resultant I-band luminosity function peaks at M_I~9.5 and drops sharply toward M_I~10.5.



قيم البحث

اقرأ أيضاً

We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at $M_V sim 12$ and the luminosity function drops sharply toward $M_V sim 14$. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index $alpha = 0.47$, the one derived from the height-dependent relations tends to be flat ($alpha = -0.10$). The resultant local surface density of disk M dwarfs (12.2 +/- 1.6 M_sun pc^{-2}) is somewhat smaller than the one obtained using local relations (14.3 +/- 1.3 M_sun pc^{-2}). Our measurement favors a short disk scale length, H = 2.75 +/- 0.16 (statistical) +/- 0.25 (systematic) kpc.
194 - John M. Cannon 2001
We present new WFPC2 narrow band imaging of the blue compact dwarf galaxy I Zw 18, which is host to the lowest-metallicity HII regions known. Images at H-alpha and H-beta are combined with archival broad band images to allow the study of the ionized gas distribution and morphology. Analysis of the H-alpha/H-beta flux ratio reveals significant enhancements in some areas of both the ``Northwest and ``Southeast regions of the galaxy, with ratios elevated to levels as high as 3.4. The H-alpha/H-beta ratio varies considerably with position throughout the galaxy. Comparing this distribution with the stellar distribution indicates that the regions of enhanced H-alpha/H-beta ratio are not due to the effects of either collisional excitation or underlying stellar absorption, and therefore are most likely interpreted as the presence of dust. This dust has an estimated mass of (2-5)x10^3 solar masses, which is consistent with the IRAS far-IR non-detection. Under the assumption that dust traces the presence of molecular gas, these results suggest that the molecular component of the ISM of I Zw 18, which is needed to fuel its active star formation, is also very clumpy. Such a distribution would be consistent with the recent FUSE non-detections of diffuse H_2.
95 - S. Phleps 2000
In this paper we present the first results of deep star counts carried out within the Calar Alto Deep Imaging Survey, CADIS (Meisenheimer 1998). Although CADIS was designed as an extragalactic survey, it also attempts to identify the stars in the fie lds in order to avoid confusion with quasars and compact galaxies. We have identified a sample of about 300 faint stars 15.5< R < 23), which are well suited to study the structure of the Galaxy. The stars lie in two fields, hereafter 16h and 9h field, respectively. The stars have been separated from galaxies by a classification scheme based on photometric spectra and morphological criteria. Distances were derived by photometric parallaxes. We are able to find stars up to distances of approximately 25 kpc above the Galactic plane. The vertical density distribution of the stars shows the contribution of the thin disk, the stellar halo and the ``thick disk of the Galaxy. We give quantitative descriptions of the components in terms of exponential disks and a de Vaucouleurs spheroid. For the disk stars we derive the luminosity function. It is equal within the errors to the local luminosity function and continues to rise out to at least M_V = 13. Implications for the mass function are briefly discussed.
With the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope, we have discovered in M4 (NGC 6121, C 1620-264) the first extensive sequence of cooling white dwarfs seen in a globular cluster. Adopting a distance modulus of (m-M)_V = 12 .65 and a reddening of E(B-V) = 0.37, we show that the sequence, which extends over 9 < M_U < 13, is comprised of white dwarfs of mass sim 0.5 M_{odot}. The total mass loss from the present turnoff to the white dwarf sequence is 0.31 M_{odot} and the intrinsic dispersion in the mean mass appears to be < 0.05 M_{odot}. Both the location of the white dwarf cooling sequence in the cluster color-magnitude diagram and the cumulative luminosity function attest to the basic correctness and completeness of the physics in theoretical models for the upper three magnitudes of the observed white dwarf cooling sequence. To test the theory in globular clusters at cooling ages beyond sim 3 times 10^8 years will require deeper and more complete data.
108 - D. R. Garnett 1996
We present new measurements of the gas-phase C/O abundance ratio in both the NW and SE components of the extremely metal-poor dwarf irregular galaxy I Zw 18, based on ultraviolet spectroscopy of the two H II regions using the Faint Object Spectrograp h on the Hubble Space Telescope. We determine values of log C/O = -0.63 +/- 0.10 for the NW component and log C/O = -0.56 +/- 0.09 for the SE component. In comparison, log C/O = -0.37 in the sun, while log C/O = -0.85 +/- 0.07 in the three most metal-poor irregular galaxies measured by Garnett et al. (1995a). Our measurements show that C/O in I Zw 18 is significantly higher than in other comparably metal-poor irregular galaxies, and above predictions for the expected C/O from massive star nucleosynthesis. These results suggest that carbon in I Zw 18 has been enhanced by an earlier population of lower-mass carbon producing stars; this idea is supported by stellar photometry of I Zw 18 and its companion, which demonstrate that the current bursts of massive stars were not the first. Despite its very low metallicity, it is likely that I Zw 18 is not a ``primeval galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا