ﻻ يوجد ملخص باللغة العربية
We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses 10^7-10^9 Msun/h. We find that the density profiles of relaxed dwarf halos are well fitted by the NFW profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model while the latter is well fitted by a lognormal distribution with lambda_0 = 0.042 and sigma_lambda = 0.63. We estimate the distribution of concentrations for halos in mass range that covers six orders of magnitude from 10^7 Msun/h to 10^13} Msun/h, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z = 0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~ 35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6 x 10^9 Msun/h to 10^13 Msun/h and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just down-scal
We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>-1 and
I discuss the dynamical interaction of galactic disks with the surrounding dark matter halos. In particular it is demonstrated that if the self-gravitating shearing sheet, a model of a patch of a galactic disk, is embedded in a live dark halo, this h
We investigate a hypothesis regarding the origin of the scalelength in halos formed in cosmological N-body simulations. This hypothesis can be viewed as an extension of an earlier idea put forth by Merritt and Aguilar. Our findings suggest that a phe
This papers explores the self similar solutions of the Vlasov-Poisson system and their relation to the gravitational collapse of dynamically cold systems. Analytic solutions are derived for power law potential in one dimension, and extensions of thes
We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter p