ﻻ يوجد ملخص باللغة العربية
We have mapped 63 regions forming high-mass stars in CS J=5-4 using the CSO. The CS peak position was observed in C34S J=5-4 towards 57 cores and in 13CS J=5-4 towards the 9 brightest cores. The sample is a subset of a sample originally selected toward water masers; the selection on maser sources should favor sources in an early stage of evolution. The integrated intensity of CS J=5-4 correlates very well with the dust continuum emission at 350 microns. The distributions of size, virial mass, surface density, and luminosity are all peaked with a few cores skewed towards much larger values than the mean. We find a weak correlation between C34S linewidth and size, consistent with Dv ~ R^{0.3}. The linewidths are much higher than would be predicted by the usual relations between linewidth and size determined from regions of lower mass. These regions are very turbulent. The derived virial mass agrees within a factor of 2 to 3 with mass estimates from dust emission at 350 microns after corrections for the density structure are accounted for. The resulting cumulative mass spectrum of cores above 1000 solar masses can be approximated by a power law with a slope of about -0.9, steeper than that of clouds measured with tracers of lower density gas and close to that for the total masses of stars in OB associations. The median turbulent pressures are comparable to those in UCHII regions, and the pressures at small radii are similar to those in hypercompact-HII regions (P/k ~ 10^{10} K cm^{-3}). The filling factors for dense gas are substantial, and the median abundance of CS is about 10^{-9}. The ratio of bolometric luminosity to virial mass is much higher than the value found for molecular clouds as a whole, and the correlation of luminosity with mass is tighter. (Abridged).
We present the initial results of a 3-mm spectral line survey towards 83 methanol maser selected massive star-forming regions. Here we report observations of the J=5-4 and 6-5 rotational transitions of methyl cyanide (CH3CN) and the J=1-0 transition
Most stars in the Galaxy, including the Sun, were born in high-mass star-forming regions. It is hence important to study the chemical processes in these regions to better understand the chemical heritage of both the Solar System and most stellar syst
An overview is given of the analysis of more than a decade of H2O maser data from our monitoring program. We find the maser emission to generally depend on the luminosity of the YSO as well as on the geometry of the SFR. There appears to be a thresho
We performed a survey in the SiO $J=5rightarrow4$ line toward a sample of 199 Galactic massive star-forming regions at different evolutionary stages with the SMT 10 m and CSO 10.4 m telescopes. The sample consists of 44 infrared dark clouds (IRDCs),
To understand the origin of water line emission and absorption during high-mass star formation, we decompose high-resolution Herschel-HIFI line spectra toward 19 high-mass star-forming regions into three distinct physical components. Protostellar env