ترغب بنشر مسار تعليمي؟ اضغط هنا

A CS J=5-4 Mapping Survey Towards High-mass Star Forming Cores Associated with Water Masers

50   0   0.0 ( 0 )
 نشر من قبل Yancy L. Shirley
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have mapped 63 regions forming high-mass stars in CS J=5-4 using the CSO. The CS peak position was observed in C34S J=5-4 towards 57 cores and in 13CS J=5-4 towards the 9 brightest cores. The sample is a subset of a sample originally selected toward water masers; the selection on maser sources should favor sources in an early stage of evolution. The integrated intensity of CS J=5-4 correlates very well with the dust continuum emission at 350 microns. The distributions of size, virial mass, surface density, and luminosity are all peaked with a few cores skewed towards much larger values than the mean. We find a weak correlation between C34S linewidth and size, consistent with Dv ~ R^{0.3}. The linewidths are much higher than would be predicted by the usual relations between linewidth and size determined from regions of lower mass. These regions are very turbulent. The derived virial mass agrees within a factor of 2 to 3 with mass estimates from dust emission at 350 microns after corrections for the density structure are accounted for. The resulting cumulative mass spectrum of cores above 1000 solar masses can be approximated by a power law with a slope of about -0.9, steeper than that of clouds measured with tracers of lower density gas and close to that for the total masses of stars in OB associations. The median turbulent pressures are comparable to those in UCHII regions, and the pressures at small radii are similar to those in hypercompact-HII regions (P/k ~ 10^{10} K cm^{-3}). The filling factors for dense gas are substantial, and the median abundance of CS is about 10^{-9}. The ratio of bolometric luminosity to virial mass is much higher than the value found for molecular clouds as a whole, and the correlation of luminosity with mass is tighter. (Abridged).



قيم البحث

اقرأ أيضاً

We present the initial results of a 3-mm spectral line survey towards 83 methanol maser selected massive star-forming regions. Here we report observations of the J=5-4 and 6-5 rotational transitions of methyl cyanide (CH3CN) and the J=1-0 transition of HCO+and H13CO+. CH3CN emission is detected in 58 sources (70 %) of our sample). We estimate the temperature and column density for 37 of these using the rotational diagram method. The temperatures we derive range from 28-166 K, and are lower than previously reported temperatures, derived from higher J transitions. We find that CH3CN is brighter and more commonly detected towards ultra-compact HII (UCHII) regions than towards isolated maser sources. Detection of CH3CN towards isolated maser sources strongly suggests that these objects are internally heated and that CH3CN is excited prior to the UCHII phase of massive star-formation. HCO+ is detected towards 82 sources (99 % of our sample), many of which exhibit asymmetric line profiles compared to H13CO+. Skewed profiles are indicative of inward or outward motions, however, we find approximately equal numbers of red and blue-skewed profiles among all classes. Column densities are derived from an analysis of the HCO+ and H13CO+ line profiles. 80 sources have mid-infrared counterparts: 68 seen in emission and 12 seen in absorption as `dark clouds. Seven of the twelve dark clouds exhibit asymmetric HCO+ profiles, six of which are skewed to the blue, indicating infalling motions. CH3CN is also common in dark clouds, where it has a 90 % detection rate.
Most stars in the Galaxy, including the Sun, were born in high-mass star-forming regions. It is hence important to study the chemical processes in these regions to better understand the chemical heritage of both the Solar System and most stellar syst ems in the Galaxy. The molecular ion HCNH+ is thought to be a crucial species in ion-neutral astrochemical reactions, but so far it has been detected only in a handful of star-forming regions, and hence its chemistry is poorly known. We have observed with the IRAM-30m Telescope 26 high-mass star-forming cores in different evolutionary stages in the J=3-2 rotational transition of HCNH+. We report the detection of HCNH+ in 16 out of 26 targets. This represents the largest sample of sources detected in this molecular ion so far. The fractional abundances of HCNH+, [HCNH+], w.r.t. H2, are in the range 0.9 - 14 X $10^{-11}$, and the highest values are found towards cold starless cores. The abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] are both < 0.01 for all objects except for four starless cores, for which they are well above this threshold. These sources have the lowest gas temperature in the sample. We run two chemical models, a cold one and a warm one, which attempt to match as much as possible the average physical properties of the cold(er) starless cores and of the warm(er) targets. The reactions occurring in the latter case are investigated in this work for the first time. Our predictions indicate that in the warm model HCNH+ is mainly produced by reactions with HCN and HCO+, while in the cold one the main progenitor species of HCNH+ are HCN+ and HNC+. The results indicate that the chemistry of HCNH+ is different in cold/early and warm/evolved cores, and the abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] is a useful astrochemical tool to discriminate between different evolutionary phases in the process of star formation.
285 - J. Brand 2004
An overview is given of the analysis of more than a decade of H2O maser data from our monitoring program. We find the maser emission to generally depend on the luminosity of the YSO as well as on the geometry of the SFR. There appears to be a thresho ld luminosity of a few times 10**4 Lsol above and below which we find different maser characteristics.
We performed a survey in the SiO $J=5rightarrow4$ line toward a sample of 199 Galactic massive star-forming regions at different evolutionary stages with the SMT 10 m and CSO 10.4 m telescopes. The sample consists of 44 infrared dark clouds (IRDCs), 86 protostellar candidates, and 69 young HII regions. We detected SiO $J=5rightarrow4$ line emission in 102 sources, with a detection rate of 57%, 37%, and 65% for IRDCs, protostellar candidates, and young HII regions, respectively. We find both broad line with Full Widths at Zero Power (FWZP) $>$ 20 kms and narrow line emissons of SiO in objects at various evolutionary stages, likely associated with high-velocity shocks and low-velocity shocks, respectively. The SiO luminosities do not show apparent differences among various evolutionary stages in our sample. We find no correlation between the SiO abundance and the luminosity-to-mass ratio, indicating that the SiO abundance does not vary significantly in regions at different evolutionary stages of star formation.
To understand the origin of water line emission and absorption during high-mass star formation, we decompose high-resolution Herschel-HIFI line spectra toward 19 high-mass star-forming regions into three distinct physical components. Protostellar env elopes are usually seen as narrow absorptions or emissions in the H2O 1113 and 1669 GHz ground-state lines, the H2O 987 GHz excited-state line, and the H2O-18 1102 GHz ground-state line. Broader features due to outflows are usually seen in absorption in the H2O 1113 and 1669 GHz lines, in 987 GHz emission, and not seen in H2O-18, indicating a low column density and a high excitation temperature. The H2O 1113 and 1669 GHz spectra show narrow absorptions by foreground clouds along the line of sight, which have a low column density and a low excitation temperature, although their H2O ortho/para ratios are close to 3. The intensities of the H2O 1113 and 1669 GHz lines do not show significant trends with luminosity, mass, or age. In contrast, the 987 GHz line flux increases with luminosity and the H2O-18 line flux decreases with mass. Furthermore, appearance of the envelope in absorption in the 987 GHz and H2O-18 lines seems to be a sign of an early evolutionary stage. We conclude that the ground state transitions of H2O trace the outer parts of the envelopes, so that the effects of star formation are mostly noticeable in the outflow wings. These lines are heavily affected by absorption, so that line ratios of H2O involving the ground states must be treated with caution. The average H2O abundance in high-mass protostellar envelopes does not change much with time. The 987 GHz line appears to be a good tracer of the mean weighted dust temperature of the source, which may explain why it is readily seen in distant galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا