ﻻ يوجد ملخص باللغة العربية
We present new Hubble Space Telescope STIS, high-resolution optical imaging of a sample of 13 submillimeter (submm) luminous galaxies, for which the optical emission has been pinpointed either through radio-1.4 GHz or millimeter interferometry. We find a predominance of irregular and complex morphologies in the sample, suggesting that mergers are likely common for submm galaxies. The component separation in these objects are on average a factor two larger than local galaxies with similarly high bolometric luminosities. The sizes and star formation rates of the submm galaxies are consistent with the maximal star formation rate densities of 20 Msun kpc^{-2} in local starburst galaxies (Lehnert & Heckman 1996). We derive quantitative morphological information for the optical galaxies hosting the submm emission; total and isophotal magnitudes, Petrosian radius, effective radius, concentration, aspect ratio, surface brightness, and asymmetry. We compare these morphological indices with those of other galaxies lying within the same STIS images. Most strikingly, we find ~70% of the submm galaxies to be extraordinarily large and elongated relative to the field population, regardless of optical magnitude. Comparison of the submm galaxy morphologies with those of optically selected galaxies at z~2-3 reveal the submm galaxies to be a morphologically distinct population, with generally larger sizes, higher concentrations and more prevalent major-merger configurations.
To properly understand the evolution of high-redshift galaxy clusters, both passive and star-forming galaxies have to be considered. Here we study the clustering environment of 21 radio galaxies and quasars at 1<z<2.5 from the third Cambridge catalog
We present an infrared adaptation of the Cluster Red-Sequence method. We modify the two filter technique of Gladders & Yee (2000) to identify clusters based on their R-[3.6] color. We apply the technique to the 4 degree^2 Spitzer First Look Survey an
Differentiating between active galactic nuclei (AGN) activity and star formation in z ~ 2 galaxies is difficult because traditional methods, such as line ratio diagnostics, change with redshift while multi-wavelength methods (X-ray, radio, IR) are se
We present initial results from a Hubble Space Telescope snapshot imaging survey of the host galaxies of Swift-BAT active galactic nuclei (AGN) at z<0.1. The hard X-ray selection makes this sample sample relatively unbiased in terms of obscuration co
Investigating the link between supermassive black hole and galaxy evolution requires careful measurements of the properties of the host galaxies. We perform simulations to test the reliability of a two-dimensional image-fitting technique to decompose