ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ultra Luminous Infrared Galaxy MKN 231: New clues from BeppoSAX and XMM-Newton

79   0   0.0 ( 0 )
 نشر من قبل Braito Valentina
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present BeppoSAX and XMM-Newton observations of MKN 231. These observations and in particular the BeppoSAX PDS data allowed us to unveil, for the first time, the highly absorbed (N$_Hsim 2times10^{24}$ cm$^{-2}$) AGN component. We find that: a) the AGN powering MKN231 has an intrinsic 2-10 keV luminosity of $1^{+1}_{-0.5}times 10^{44}$ erg/s; b) the strong starburst activity contributes significantly in the 0.1-10 keV energy range. We propose that the starburst activity strongly contributes to the far infrared luminosity of MKN 231; this is also suggested by the multiwavelength properties of MKN 231.



قيم البحث

اقرأ أيضاً

We discuss XMM-Newton and BeppoSAX observations of MKN 231, the lowest-redshift Broad Absorption Line (BAL) QSO known so far and one of the best-studied Ultra Luminous Infrared Galaxies. By combining the XMM-Newton spectral resolution and the high-en ergy bandpass of BeppoSAX we have been able to study in more detail than previously possible its 0.2--50 keV spectral properties. The BeppoSAX PDS data unveiled, for the first time, a highly absorbed ($N_Hsim 2times 10^{24}$cm$^{-2}$) power-law component. We find that: a) below 10 keV we are seeing only reprocessed radiation through reflection and/or scattering; b) the intrinsic 2-10 keV luminosity of MKN 231 is $1^{+1.0}_{-0.5} times 10^{44}$ ergs s$^{-1}$, i.e. more than an order of magnitude greater than previous measurements; c) the starburst activity significantly contributes to the soft ($E<2$ keV) X-ray emission.
We present preliminary results of XMM-Newton observations of 5 Ultra-luminous Infrared Galaxies (ULIRGs), part of a mini-survey program dedicated to 10 ULIRGs selected from the bright IRAS sample. For 3 of them (IRAS 20551-4250, IRAS 19254-7245 and M kn 231) we find strong evidence for the presence of a hidden AGN, while for two others (IRAS 20110-4156 IRAS 22491-1808) the S/N ratio of the data does not allow us to be conclusive. In particular, we have detected a strong Fe-K line in the X-ray spectra of IRAS19254-7245, with an equivalent width (~2 keV) suggestive that most of the energy source in this object is due to a deeply buried AGN.
60 - P.O. Petrucci 2003
Mkn 841 has been observed simultaneously by XMM and BeppoSAX in January 2001. Due to operational contingency, the 30ks XMM observation was split into two parts, separated by about 15 hours. We first report the presence of a narrow iron line which app ears to be rapidly variable between the two pointings, requiring a non-standard interpretation. We then focus on the analysis of the broad band (0.3-200 keV) continuum using the XMM/EPIC, RGS and SAX/PDS data. The Mkn 841 spectrum is well fitted by a comptonization model in a geometry more photon-fed than a simple slab geometry above a passive disk. It presents a relatively large reflection (R>2) which does not agree with an apparently weak iron line. It also show the presence of a strong soft excess wellfitted by a comptonized spectrum in a cool plasma, suggesting the presence of a multi-temperature corona.
84 - G. Fossati 1999
Mkn 421 was repeatedly observed with BeppoSAX in 1997-1998. We present highlights of the results of the thorough temporal and spectral analysis discussed by Fossati et al. (1999) and Maraschi et al. (1999), focusing on the flare of April 1998, which was simultaneously observed also at TeV energies. The detailed study of the flare in different energy bands reveals a few very important new results: (a) hard photons lag the soft ones by 2-3 ks *a behavior opposite to what is normally found in High energy peak BL Lacs X-ray spectra*; (b) the flux decay of the flare can be intrinsically achromatic if a stationary underlying emission component is present. Moreover the spectral evolution during the flare has been followed by extracting X-ray spectra on few ks intervals, allowing to detect for the first time the peak of the synchrotron component shifting to higher energies during the rising phase, and then receding. The spectral analysis confirms the delay in the flare at the higher energies, as above a few keV the spectrum changes only after the peak of the outburst has occurred. The spectral and temporal information obtained challenge the simplest models currently adopted for the (synchrotron) emission and most importantly provide clues on the particle acceleration process. A theoretical picture accounting for all the observational constraints is discussed, where electrons are injected at low energies and then progressively accelerated during the development of the flare.
We briefly review some of the progress made in the last decade in the study of the X-ray properties of the quasar population from the luminous, local objects observed by BeppoSAX to the large, rapidly increasing population of z>4 quasars detected by Chandra and XMM-Newton in recent years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا