ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observation of the ULIRG NGC 6240: The physical nature of the complex Fe K line emission

52   0   0.0 ( 0 )
 نشر من قبل Luigi Gallo
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Th. Boller




اسأل ChatGPT حول البحث

We report on an XMM-Newton observation of the ultraluminous infrared galaxy NGC 6240. The 0.3-10 keV spectrum can be successfully modelled with: (i) three collisionally ionized plasma components with temperatures of about 0.7, 1.4, and 5.5 keV; (ii) a highly absorbed direct power-law component; and (iii) a neutral Fe K_alpha and K_beta line. We detect a significant neutral column density gradient which is correlated with the temperature of the three plasma components. Combining the XMM-Newton spectral model with the high spatial resolution Chandra image we find that the temperatures and the column densities increase towards the center. With high significance, the Fe K line complex is resolved into three distinct narrow lines: (i) the neutral Fe K_alpha line at 6.4 keV; (ii) an ionized line at about 6.7 keV; and (iii) a higher ionized line at 7.0 keV (a blend of the Fe XXVI and the Fe K_beta line). While the neutral Fe K line is most probably due to reflection from optically thick material, the Fe XXV and Fe XXVI emission arises from the highest temperature ionized plasma component. We have compared the plasma parameters of the ultraluminous infrared galaxy NGC 6240 with those found in the local starburst galaxy NGC 253. We find a striking similarity in the plasma temperatures and column density gradients, suggesting a similar underlying physical process at work in both galaxies.



قيم البحث

اقرأ أيضاً

82 - T. Saito , D. Iono , J. Ueda 2017
We present 0.97 $times$ 0.53 (470 pc $times$ 250 pc) resolution CO ($J$ = 2-1) observations toward the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the ce ntral 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes ($sim$11 kpc). We found that the CO emission around the central a few kpc has extremely broad velocity wings with full width at zero intensity $sim$ 2000 km s$^{-1}$, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO datacube. The distribution of the broad CO components show four extremely large linewidth regions ($sim$1000 km s$^{-1}$) located 1-2 kpc away from both nuclei. Spatial coincidence of the large linewidth regions with H$alpha$, near-IR H$_2$, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
126 - G. Ponti 2009
We report on partially overlapping XMM-Newton (~260 ks) and Suzaku (~100 ks) observations of the iron K band in the nearby, bright Seyfert 1 galaxy Mrk 509. The source shows a resolved neutral Fe K line, most probably produced in the outer part of th e accretion disc. Moreover, the source shows further emission blue-ward of the 6.4 keV line due to ionized material. This emission is well reproduced by a broad line produced in the accretion disc, while it cannot be easily described by scattering or emission from photo-ionized gas at rest. The summed spectrum of all XMM-Newton observations shows the presence of a narrow absorption line at 7.3 keV produced by highly ionized outflowing material. A spectral variability study of the XMM-Newton data shows an indication for an excess of variability at 6.6-6.7 keV. These variations may be produced in the red wing of the broad ionized line or by variation of a further absorption structure. The Suzaku data indicate that the neutral Fe Kalpha line intensity is consistent with being constant on long timescales (of a few years) and they also confirm as most likely the interpretation of the excess blueshifted emission in terms of a broad ionized Fe line. The average Suzaku spectrum differs from the XMM-Newton one for the disappearance of the 7.3 keV absorption line and around 6.7 keV, where the XMM-Newton data alone suggested variability.
We present results from a 150 ksec Suzaku observation of the Seyfert 1.5 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with the presence of a low-ionization absorber which has a colum n density near 5 * 10^{22} cm^{-2} and covers most of the X-ray continuum source (covering fraction 96-100%). A high-ionization absorbing component, which yields a narrow absorption feature consistent with Fe K XXVI, is confirmed. A relativistically broadened Fe K alpha line is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad Fe line. A narrow Fe K alpha emission line has a velocity width consistent with the Broad Line Region. The low-ionization absorber may be responsible for producing the narrow Fe K alpha line, though a contribution from additional material out of the line of sight is possible. We include in our model soft band emission lines from He- and H-like ions of N, O, Ne and Mg, consistent with photo-ionization, though a small contribution from collisionally-ionized emission is possible.
87 - G. Ponti 2006
We study the X-ray spectral variability of the Narrow Line Seyfert 1 galaxy NGC 4051 as observed during two XMM-Newton observations. The data show evidence for a neutral and constant reflection component and for constant emission from photoionized ga s, which are included in all spectral models. The nuclear emission can be modelled both in terms of a ``standard model (pivoting power law plus a black body component for the soft excess) and of a two--component one (power law plus ionized reflection from the accretion disc). The standard model results indicate that the soft excess does not follow the standard black body law. Moreover, although the spectral slope is correlated with flux, which is consistent with spectral pivoting, the hardest photon indexes are so flat as to require rather unusual scenarios. These problems can be solved in terms of the two-component model in which the soft excess is not thermal, but due to the ionized reflection component. The variability of the reflection component from the inner disc closely follows the predictions of the light bending model, suggesting that most of the primary nuclear emission is produced in the very innermost regions, only a few gravitational radii from the central black hole. (abridged)
113 - R. L. C. Starling 2004
We examine the XMM X-ray spectrum of the LINER-AGN NGC 7213, which is best fit with a power law, K-alpha emission lines from Fe I, Fe XXV and Fe XXVI and a soft X-ray collisionally ionised thermal plasma with kT=0.18 +0.03/-0.01 keV. We find a lumino sity of 7x10^(-4) L_Edd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا