ﻻ يوجد ملخص باللغة العربية
Under the hypothesis of a Dark Matter composed by supersymmetric particles like neutralinos, we investigate the possibility that their annihilation in the haloes of nearby galaxies could produce detectable fluxes of $gamma$-photons. Expected fluxes depend on several, poorly known quantities such as the density profiles of Dark Matter haloes, the existence and prominence of central density cusps and the presence of a population of sub-haloes. We find that, for all reasonable choices of Dark Matter halo models, the intensity of the $gamma$-ray flux from some of the nearest extragalactic objects, like M31, is comparable or higher than the diffuse Galactic foreground. We show that next generation ground-based experiments could have the sensitivity to reveal such fluxes which could help us unveiling the nature of Dark Matter particles.
Recent studies have suggested the possibility that the lightest supersymmetric particle is a suitable dark matter candidate. In this theoretical framework, annihilations in high density environments like the center of dark matter haloes may produce a
We study the effects of WIMP dark matter (DM) on the collapse and evolution of the first stars in the Universe. Using a stellar evolution code, we follow the pre-Main Sequence (MS) phase of a grid of metal-free stars with masses in the range 5-600 so
Upcoming $gamma$-ray satellites will search for Dark Matter annihilations in Milky Way substructures (or clumps). The prospects for detecting these objects strongly depend on the assumptions made on the distribution of Dark Matter in substructures, a
We consider dark matter annihilation into Standard Model particles and show that the least detectable final states, namely neutrinos, define an upper bound on the total cross section. Calculating the cosmic diffuse neutrino signal, and comparing it t
We show that the canonical oscillation-based (non-resonant) production of sterile neutrino dark matter is inconsistent at $>99$% confidence with observations of galaxies in the Local Group. We set lower limits on the non-resonant sterile neutrino mas