ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray and extreme-ultraviolet flux evolution of SS Cygni throughout outburst

56   0   0.0 ( 0 )
 نشر من قبل Peter J. Wheatley
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer, and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9--1.4d after the beginning of the optical rise and 0.6d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows the propagation time of the outburst heating wave may have been previously overestimated. The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with timescales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray lightcurve. X-ray and extreme-ultraviolet luminosities imply accretion rates of 3e15g/s in quiescence, 1e16g/s when the boundary layer becomes optically thick, and ~1e18g/s at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.



قيم البحث

اقرأ أيضاً

We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).
We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plas ma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.
The 2009 November outburst of the neutron star X-ray binary Aquila X-1 was observed with unprecedented radio coverage and simultaneous pointed X-ray observations, tracing the radio emission around the full X-ray hysteresis loop of the outburst for th e first time. We use these data to discuss the disc-jet coupling, finding the radio emission to be consistent with being triggered at state transitions, both from the hard to the soft spectral state and vice versa. Our data appear to confirm previous suggestions of radio quenching in the soft state above a threshold X-ray luminosity of about 10% of the Eddington luminosity. We also present the first detections of Aql X-1 with Very Long Baseline Interferometry (VLBI), showing that any extended emission is relatively diffuse, and consistent with steady jets rather than arising from discrete, compact knots. In all cases where multi-frequency data were available, the source radio spectrum is consistent with being flat or slightly inverted, suggesting that the internal shock mechanism that is believed to produce optically thin transient radio ejecta in black hole X-ray binaries is not active in Aql X-1.
The black hole binary GS 2023+338 exhibited an unprecedently bright outburst on June 2015. Since June 17th, the high energy instruments on board INTEGRAL detected an extremely variable emission during both bright and low luminosity phases, with drama tic variations of the hardness ratio on time scales of ~seconds. The analysis of the IBIS and SPI data reveals the presence of hard spectra in the brightest phases, compatible with thermal Comptonization with temperature kTe ~ 40 keV. The seed photons temperature is best fit by kT0 ~ 7 keV, that is too high to be compatible with blackbody emission from the disk. This result is consistent with the seed photons being provided by a different source, that we hypothesize to be a synchrotron driven component in the jet. During the brightest phase of flares, the hardness shows a complex pattern of correlation with flux, with a maximum energy released in the range 40-100 keV. The hard X-ray variability for E > 50 keV is correlated with flux variations in the softer band, showing that the overall source variability cannot originate entirely from absorption, but at least part of it is due to the central accreting source.
229 - V.F. Suleimanov 2012
The Chandra / LETG spectrum of SS Cyg in outburst shows broad (approx 5 A) spectral features that have been interpreted as a large number of absorption lines on a blackbody continuum with a temperature of 250 kK (Mauche 2004). It is most probable tha t this is the spectrum of the fast-rotating optically thick boundary layer on the white dwarf surface. Here we present the results of fitting this spectrum with high gravity hot stellar model atmospheres. An extended set of LTE model atmospheres with solar chemical composition was computed for this purpose. The best fit is obtained with the following parameters: T_eff=190 kK, log g=6.2, and N_H=8 10^{19} cm^{-2}. The spectrum of this model describes the observed spectrum in the 60--125 A range reasonably well, but at shorter wavelengths the observed spectrum has much higher flux. The reasons for this are discussed. The derived low surface gravity supports the hypothesis of the fast rotating boundary layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا