ترغب بنشر مسار تعليمي؟ اضغط هنا

CHANDRA Observations of X-ray Jet Structure on kpc to Mpc Scales

117   0   0.0 ( 0 )
 نشر من قبل Daniel A. Schwartz
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With its exquisite spatial resolution of better than 0.5 arcsecond, the Chandra observatory is uniquely capable of resolving and studying the spatial structure of extragalactic X-ray jets on scales of a few to a few hundred kilo-parsec. Our analyses of four recent Chandra images of quasar jets interpret the X-ray emission as inverse Compton scattering of high energy electrons on the cosmic microwave background. We infer that these jets are in bulk relativistic motion, carrying kinetic powers upwards of 10^46 ergs/s to distances of hundreds of kpc, with very high efficiency.



قيم البحث

اقرأ أيضاً

We report results from Chandra observations of the X-ray jet of 3C~273 during the calibration phase in 2000 January. The zeroeth-order images and spectra from two 40-ks exposures with the HETG and LETG+ACIS-S show a complex X-ray structure. The brigh test optical knots are detected and resolved in the 0.2-8 keV energy band. The X-ray morphology tracks well the optical. However, while the X-ray brightness decreases along the jet, the outer parts of the jet tend to be increasingly bright with increasing wavelength. The spectral energy distributions of four selected regions can best be explained by inverse Compton scattering of (beamed) cosmic microwave background photons. The model parameters are compatible with equipartition and a moderate Doppler factor, which is consistent with the one-sidedness of the jet. Alternative models either imply implausible physical conditions and energetics (the synchrotron self-Compton model) or are sufficiently ad hoc to be unconstrained by the present data (synchrotron radiation from a spatially or temporally distinct particle population).
67 - D.A. Schwartz 2000
The quasar PKS 0637-753, the first celestial X-ray target of the Chandra X-ray Observatory, has revealed asymmetric X-ray structure extending from 3 to 12 arcsec west of the quasar, coincident with the inner portion of the jet previously detected in a 4.8 GHz radio image (Tingay et al. 1998). At a redshift of z=0.651, the jet is the largest (~100 kpc) and most luminous (~10^{44.6} ergs/s) of the few so far detected in X-rays. This letter presents a high resolution X-ray image of the jet, from 42 ks of data when PKS 0637-753 was on-axis and ACIS-S was near the optimum focus. For the inner portion of the radio jet, the X-ray morphology closely matches that of new ATCA radio images at 4.8 and 8.6 GHz. Observations of the parsec scale core using the VSOP space VLBI mission show structure aligned with the X-ray jet, placing important constraints on the X-ray source models. HST images show that there are three small knots coincident with the peak radio and X-ray emission. Two of these are resolved, which we use to estimate the sizes of the X-ray and radio knots. The outer portion of the radio jet, and a radio component to the east, show no X-ray emission to a limit of about 100 times lower flux. The X-ray emission is difficult to explain with models that successfully account for extra-nuclear X-ray/radio structures in other active galaxies. We think the most plausible is a synchrotron self-Compton (SSC) model, but this would imply extreme departures from the conventional minimum-energy and/or homogeneity assumptions. We also rule out synchrotron or thermal bremsstrahlung models for the jet X-rays, unless multicomponent or ad hoc geometries are invoked.
We present the most precise estimate to date of the clustering of quasars on very small scales, based on a sample of 47 binary quasars with magnitudes of $g<20.85$ and proper transverse separations of $sim 25,h^{-1}$,kpc. Our sample of binary quasars , which is about 6 times larger than any previous spectroscopically confirmed sample on these scales, is targeted using a Kernel Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is complete in that all of the KDE target pairs with $17.0 lesssim R lesssim 36.2,h^{-1}$,kpc in our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We catalogue 230 candidate quasar pairs with angular separations of $<8arcsec$, from which our binary quasars were identified. We determine the projected correlation function of quasars ($bar W_{rm p}$) in four bins of proper transverse scale over the range $17.0 lesssim R lesssim 36.2,h^{-1}$,kpc. The implied small-scale quasar clustering amplitude from the projected correlation function, integrated across our entire redshift range, is $A=24.1pm3.6$ at $sim 26.6 ~h^{-1}$,kpc. Our sample is the first spectroscopically confirmed sample of quasar pairs that is sufficiently large to study how quasar clustering evolves with redshift at $sim 25 ~h^{-1}$ kpc. We find that empirical descriptions of how quasar clustering evolves with redshift at $sim 25 ~h^{-1}$ Mpc also adequately describe the evolution of quasar clustering at $sim 25 ~h^{-1}$ kpc.
The X-ray regime is a largely underused resource for constraining interstellar dust grain models and improving our understanding of the physical processes that dictate how grains evolve over their lifetimes. This is mostly due to current detectors re latively low sensitivity and high background, limiting the targets to the brightest sources. The improved sensitivity of the next generation of X-ray detectors will allow studies of much fainter sources, at much higher angular resolution, expanding our sampled sightlines in both quality and quantity.
We have made a 30 ksec Chandra observation of the redshift z=0.63 GPS quasar B2 0738+313. We detected X-ray emission from the core and have discovered a 200 kpc (projected on the sky) X-ray jet. The X-ray jet is narrow and curves, following the exten ded radio structure to the south of the quasar, and ending with a hot spot at the southernmost part of the radio lobe. The jet has a knot at ~13 arcsec away from the core. The knot emission is consistent with the X-rays being created by the inverse Compton scattering of the cosmic microwave background (CMB) photons and requires jet bulk Lorentz factors of a few (Gamma_{bulk} ~ 5-7). We discuss the emission mechanisms that may be responsible for the jet emission. We present new VLA data of the core and jet, and discuss the relation between the extended radio and X-ray emission. Extended emission observed in several GPS sources has been interpreted as a signature of the source past activity, while the GPS source is young and newly expanded. We argue that B2~0738+313 may be an example of a new class of radio sources similar to the FRII radio galaxies in their high jet bulk velocities, but with the powerful GPS-like nucleus. B2 0738+313 also has two damped Lyman-alpha systems along the line of sight, at z_{abs} = 0.0912 and 0.2212. We discuss the possible connection between the X-ray absorption (7.2+/-0.9 e20 cm(-2)) detected in the ACIS spectrum and these two intervening absorbers. We also investigate an extended structure within the central 10 arcsec of the core in the relation to structure seen in the optical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا