ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic cannibalism in the galaxy cluster C0337-2522 at z=0.59

311   0   0.0 ( 0 )
 نشر من قبل Luca Ciotti
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Nipoti




اسأل ChatGPT حول البحث

According to the galactic cannibalism model, cD galaxies are formed in the center of galaxy clusters by merging of massive galaxies and accretion of smaller stellar systems: however, observational examples of the initial phases of this process are lacking. We have identified a strong candidate for this early stage of cD galaxy formation: a group of five elliptical galaxies in the core of the X-ray cluster C0337-2522 at redshift z=0.59. With the aid of numerical simulations, in which the galaxies are represented by N-body systems, we study their dynamical evolution up to z=0; the cluster dark matter distribution is also described as a N-body system. We find that a multiple merging event in the considered group of galaxies will take place before z=0 and that the merger remnant preserves the Fundamental Plane and the Faber-Jackson relations, while its behavior with respect to the Mbh-sigma relation is quite sensitive to the details of black hole merging [abridged].



قيم البحث

اقرأ أيضاً

56 - M.P. Ulmer , C. Adami , G. Covone 2005
This is a report of Chandra, XMM-Newton, HST and ARC observations of an extended X-ray source at z = 0.59. The apparent member galaxies range from spiral to elliptical and are all relatively red (i-Ks about 3). We interpret this object to be a fossil group based on the difference between the brightness of the first and second brightest cluster members in the i-band, and because the rest-frame bolometric X-ray luminosity is about 9.2x10^43 h70^-2 erg s^-1. This makes Cl 1205+44 the highest redshift fossil group yet reported. The system also contains a central double-lobed radio galaxy which appears to be growing via the accretion of smaller galaxies. We discuss the formation and evolution of fossil groups in light of the high redshift of Cl 1205+44.
We present X-ray and spectroscopic confirmation of a cluster assembling from multiple, distinct galaxy groups at z=0.371. Initially detected in the Las Campanas Distant Cluster Survey, the structure contains at least four X-ray detected groups that l ie within a maximum projected separation of 4 Mpc and within dv=550 km/s of one another. Using Chandra imaging and wide-field optical spectroscopy, we show that the individual groups lie on the local sigma-T relation, and derive a total mass of M>=5e14 solar masses for the entire structure. We demonstrate that the groups are gravitationally bound to one another and will merge into a single cluster with >=1/3 the mass of Coma. We also find that although the cluster is in the process of forming, the individual groups already have a higher fraction of passive members than the field. This result indicates that galaxy evolution on group scales is key to developing the early-type galaxies that dominate the cluster population by z~0.
We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at z =1.45, which was found in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy show s that 6 galaxies within a 60 arcsec diameter region lie at z = 1.45 +/- 0.01. Model fits to the X-ray spectra of the extended emission yield kT = 7.4 (+2.7,-1.8) keV (90 % confidence); if there is an undetected central X-ray point source then kT = 6.5 (+2.6,-1.8) keV. The bolometric X-ray luminosity is Lx = 4.4 (+0.8,-0.6) x 10^44 ergs/s over a 2 Mpc radial region. The measured Tx, which is the highest known for a cluster at z > 1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS J2215.9-1738 is the highest currently known for a spectroscopically-confirmed cluster of galaxies.
We present a deep image of the radio galaxy MRC 1138-262 taken with the Hubble Space Telescope (HST) at a redshift of z = 2.2. The galaxy is known to have properties of a cD galaxy progenitor and be surrounded by a 3 Mpc-sized structure, identified w ith a protocluster. The morphology shown on the new deep HST/ACS image is reminiscent of a spiders web. More than 10 individual clumpy features are observed, apparently star-forming satellite galaxies in the process of merging with the progenitor of a dominant cluster galaxy 11 Gyr ago. There is an extended emission component, implying that star formation was occurring over a 50 times 40 kpc region at a rate of more than 100 M_sun/yr. A striking feature of the newly named ``Spiderweb galaxy is the presence of several faint linear galaxies within the merging structure. The dense environments and fast galaxy motions at the centres of protoclusters may stimulate the formation of these structures, which dominate the faint resolved galaxy populations in the Hubble Ultra Deep Field. The new image provides a unique testbed for simulations of forming dominant cluster galaxies.
We use semi-analytic models of structure formation to interpret gravitational lensing measurements of substructure in galaxy cluster cores (R<=250kpc/h) at z=0.2. The dynamic range of the lensing-based substructure fraction measurements is well match ed to the theoretical predictions, both spanning f_sub~0.05-0.65. The structure formation model predicts that f_sub is correlated with cluster assembly history. We use simple fitting formulae to parameterize the predicted correlations: Delta_90 = tau_90 + alpha_90 * log(f_sub) and Delta_50 = tau_50 + alpha_50 * log(f_sub), where Delta_90 and Delta_50 are the predicted lookback times from z=0.2 to when each theoretical cluster had acquired 90% and 50% respectively of the mass it had at z=0.2. The best-fit parameter values are: alpha_90 = (-1.34+/-0.79)Gyr, tau_90 = (0.31+/-0.56)Gyr and alpha_50 = (-2.77+/-1.66)Gyr, tau_50 = (0.99+/-1.18)Gyr. Therefore (i) observed clusters with f_sub<~0.1 (e.g. A383, A1835) are interpreted, on average, to have formed at z>~0.8 and to have suffered <=10% mass growth since z~0.4, (ii) observed clusters with f_sub>~0.4 (e.g. A68, A773) are interpreted as, on average, forming since z~0.4 and suffering >10% mass growth in the ~500Myr preceding z=0.2, i.e. since z=0.25. In summary, observational measurements of f_sub can be combined with structure formation models to estimate the age and assembly history of observed clusters. The ability to ``age-date approximately clusters in this way has numerous applications to the large clusters samples that are becoming available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا