ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman Break Galaxies at Redshift z~3: Survey Description and Full Data Set

75   0   0.0 ( 0 )
 نشر من قبل Charles C. Steidel
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.C. Steidel




اسأل ChatGPT حول البحث

We present the basic data for a large ground-based spectroscopic survey for z~3 ``Lyman break galaxies (LBGs), photometrically selected using rest-UV colors from very deep images in 17 high Galactic latitude fields. The total survey covers an area of 0.38 square degrees, and includes 2347 photometrically-selected candidate LBGs to an apparent R_{AB} magnitude limit of 25.5. Approximately half of these objects have been observed spectroscopically using the Keck telescopes, yielding 940 redshifts with <z> =2.96 +/- 0.29. We discuss the images, photometry, target selection, and the spectroscopic program in some detail, and present catalogs of the photometric and spectroscopic data, made available in electronic form. We discuss the general utility of conducting nearly-volume-limited redshift surveys in prescribed redshift intervals using judicious application of photometric pre-selection.



قيم البحث

اقرأ أيضاً

90 - C.C. Steidel 1998
We report on the status of large surveys of photometrically selected star forming galaxies at z~3 and z~4, with particular emphasis on both the advantages and the limitations of selecting objects using the ``Lyman break technique. Current results on the luminosity functions, luminosity densities, color distribution, star formation rates, clustering properties, and the differential evolution of the population as a function of redshift are summarized.
333 - R. Bielby 2012
We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ~ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Visible Multi-Object Spectrograph (VIMOS), giving a mean redshift of z=2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp({sigma}) we find that the results are well fit with a single power-law model, with clustering scale lengths of r0=3.46+-0.41 and 3.83+-0.24 Mpc/h, respectively. We note that the corresponding combined {xi}(r) slope is flatter than for local galaxies at {gamma} = 1.5-1.6 rather than {gamma}=1.8. This flat slope is confirmed by the z-space correlation function, {xi}(s), and in the range 10<s<100 Mpc/h the VLRS shows ~2.5{sigma} excess over the {Lambda} cold dark matter. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z~1. We then analyse the LBG z-space distortions using the 2D correlation function, {xi}({sigma}, {pi}), finding for the combined sample a large-scale infall parameter of $beta$ = 0.38+-0.19 and a velocity dispersion of 420km/s. Based on our measured {beta}, we are able to determine the gravitational growth rate, finding a value of f(z = 3)=0.99+-0.50 (or f{sigma}8 = 0.26+-0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with {Lambda}CDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/Msun) = 11.57+-0.15 and 11.73+-0.07, respectively.
This paper illustrates how mock observational samples of high-redshift galaxies with sophisticated selection criteria can be extracted from the predictions of GALICS, a hybrid model of hierarchical galaxy formation that couples the outputs of large c osmological simulations and semi-analytic recipes to describe dark matter collapse and the physics of baryons respectively. As an example of this method, we focus on the properties of Lyman Break Galaxies at redshift 3. With the MOMAF software package described in a companion paper, we generate a mock observational sample with selection criteria as similar as possible to those implied in the actual observations of z = 3 LBGs by Steidel et al.(1995). Our model predictions are in good agreement with the observed number density and 2D correlation function. We investigate the optical/IR luminosity budget as well as several other physical properties of LBGs and find them to be in general agreement with observed values. Looking into the future of these LBGs we predict that 75% of them end up as massive ellipticals today, even though only 35% of all our local ellipticals are predicted to have a LBG progenitor. In spite of some shortcomings, this new mock observation method clearly represents a necessary first step toward a more accurate comparison between hierarchical models of galaxy formation and real observational surveys.
228 - Kentaro Nagamine 2010
We study the properties of Lyman-alpha emitters (LAEs) and Lyman-break galaxies (LBGs) at z=3-6 using cosmological SPH simulations. We investigate two simple scenarios for explaining the observed Ly-a and rest-frame UV luminosity functions (LFs) of L AEs: (i) the escape fraction scenario, in which the effective escape fraction (including the IGM attenuation) of Ly-a photons is f_Lya ~0.1 (0.15) at z=3 (6), and (ii) the stochastic scenario, in which the fraction of LAEs that are turned on at z=3 (6) is Cstoc ~0.07 (0.2) after correcting for the IGM attenuation. Our comparisons with a number of different observations suggest that the stochastic scenario is preferred over the escape fraction scenario. We find that the mean values of stellar mass, metallicity and black hole mass hosted by LAEs are all smaller in the stochastic scenario than in the escape fraction scenario. In our simulations, the galaxy stellar mass function evolves rapidly, as expected in hierarchical structure formation. However, its evolution is largely compensated by a beginning decline in the specific star formation rate, resulting in little evolution of the rest-frame UV LF from z=6 to 3. The rest-frame UV LF of both LAEs and LBGs at z=3 & 6 can be described well by the stochastic scenario provided the extinction is moderate, E(B-V) ~0.15, for both populations, although our simulation might be overpredicting the number of bright LBGs at z=6. We also discuss the correlation function and bias of LAEs. The Ly-a LFs at z=6 in a field-of-view of 0.2 deg^2 show a significantly larger scatter owing to cosmic variance relative to that in a 1 deg^2 field, and the scatter seen in the current observational estimates of the Ly-a LF can be accounted for by cosmic variance.
66 - D. Burgarella 2007
We use deep GALEX images of CDFS in UV to define the first large sample of 420 Lyman Break Galaxies at z~1. We use a PSF fitting to estimate UV magnitudes on these deep crowded images. Deep Spitzer IRAC and MIPS provide the first detection of a large sample of Lyman Break Galaxies in the mid- to far-infrared range. We are therefore able to study and compare the UV and TIR emission of Lyman Break Galaxies. We find that about 15% of the LBG sample are strong emitters at 24 microns (Red LBGs). Most of them are Luminous IR Galaxies (LIRGs) while the rest (Blue LBGs) are undetected at the 83 microJy level of MIPS GTO image. We find that Blue LBGs have a Spectral Energy Distribution similar to high redshift Lyman Break Galaxies. Finally, the dust-to-FUV ratio of this sample is compared with similar ratios at z=1 and z~2. This work suggests an evolution (decrease) of the dust-to-FUV ratio with the redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا