ﻻ يوجد ملخص باللغة العربية
We report on the results of the Chandra observation on the central region of the Monoceros R2 cloud (Mon R2), a high-mass star-forming region (SFR). With a deep exposure of 100 ks, we detected 368 X-ray sources, 80% of which were identified with the NIR counterparts. We systematically analyzed the spectra and time variability of most of the X-ray emitting sources and provided a comprehensive X-ray source catalog for the first time. Using the J-, H-, and K-band magnitudes of the NIR counterparts, we estimated the evolutionary phase (classical T Tauri stars and weak-lined T Tauri stars) and the mass of the X-ray emitting sources, and analyzed the X-ray properties as a function of the age and mass. We found a marginal hint that classical T Tauri stars have a slightly higher temperature (2.4 keV) than that of weak-lined T Tauri stars (2.0 keV). A significant fraction of the high- and intermediate-mass sources have a time variability and high plasma temperatures (2.7 keV). We performed the same analysis for other SFRs, the Orion Nebula Cluster and Orion Molecular Cloud-2/3, and obtained similar results to Mon R2. This supports the earlier results of this observation obtained by Kohno et al. (2002, ApJ, 567, 423) and Preibisch et al. (2002, A&A, 392, 945) that high- and intermediate- mass young stellar objects emit X-rays via magnetic activity. We also found a significant difference in the spatial distribution between X-ray and NIR sources.
Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy e
AIMS: To study the properties of X-ray emissions from young stellar objects (YSOs), through their evolution from Class I to Class III and determine whether Class 0 protostars emit in X-rays. METHODS: A deep Chandra X-ray observation of the Serpens st
High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2, harbors one of the closest such systems, making it an excellent target for case studies. We investigate the morphology, stability and dynamical properties of t
Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star
The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off