ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasibility of GRB with TeV gamma ray all sky monitor

51   0   0.0 ( 0 )
 نشر من قبل Satoko Osone
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.Osone




اسأل ChatGPT حول البحث

We discuss feasibility of Gamma ray burst (GRB) with TeV gamma ray all sky monitor and discuss necessity of TeV gamma ray cherenkov all sky monitor.



قيم البحث

اقرأ أيضاً

355 - L. Amati , J. Braga , F. Frontera 2014
We describe the GRB and All-sky Monitor Experiment (GAME) mission submitted by a large international collaboration (Italy, Germany, Czech Repubblic, Slovenia, Brazil) in response to the 2012 ESA call for a small mission opportunity for a launch in 20 17 and presently under further investigation for subsequent opportunities. The general scientific objective is to perform measurements of key importance for GRB science and to provide the wide astrophysical community of an advanced X-ray all-sky monitoring system. The proposed payload was based on silicon drift detectors (~1-50 keV), CdZnTe (CZT) detectors (~15-200 keV) and crystal scintillators in phoswich (NaI/CsI) configuration (~20 keV-20 MeV), three well established technologies, for a total weight of ~250 kg and a required power of ~240 W. Such instrumentation allows a unique, unprecedented and very powerful combination of large field of view (3-4 sr), a broad energy energy band extending from ~1 keV up to ~20 MeV, an energy resolution as good as ~300 eV in the 1-30 keV energy range, a source location accuracy of ~1 arcmin. The mission profile included a launch (e.g., by Vega) into a low Earth orbit, a baseline sky scanning mode plus pointed observations of regions of particular interest, data transmission to ground via X-band (4.8 Gb/orbit, Alcantara and Malindi ground stations), and prompt transmission of GRB / transient triggers.
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using t he change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermis solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation
The Wide-band All-sky Monitor (WAM) is a function of the large lateral BGO shield of the Hard X-ray Detector (HXD) onboard Suzaku. Its large geometrical area of 800 cm^2 per side, the large stopping power for the hard X-rays and the wide-field of vie w make the WAM an ideal detector for gamma-ray bursts (GRBs) observations in the energy range of 50-5000 keV. In fact, the WAM has observed 288 GRBs confirmed by other satellites, till the end of May 2007.
107 - D. A. Smith 2001
We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV ) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.
The distribution of cosmic rays in the Galaxy at energies above few TeVs is still uncertain and this affects the expectations for the diffuse gamma flux produced by hadronic interactions of cosmic rays with the interstellar gas. We show that the TeV gamma-ray sky can provide interesting constraints. Namely, we compare the flux from the galactic plane measured by Argo-YBJ, HESS, HAWC and Milagro with the expected flux due to diffuse emission and point-like and extended sources observed by HESS showing that experimental data can already discriminate among different hyphoteses for cosmic ray distribution. The constraints can be strengthened if the contribution of sources not resolved by HESS is taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا