ﻻ يوجد ملخص باللغة العربية
The theory of collisional depolarization of spectral lines by atomic hydrogen (Derouich et al. cite{derouich1}) is extended to $d$ $(l$=2) atomic levels. Depolarization rates, polarization and population transfer rates are calculated and results are given as a function of the temperature. Cross sections as a function of the effective quantum number for a relative velocity of 10 $textrm{km s}^{-1}$ are also given together with velocity exponents $lambda$, if textbf{they exist}, on the assumption that the cross section varies with velocity as $v^{-lambda}$. A discussion of our results is presented.
Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for co
Simulations of the generation of the atomic polarization is necessary for interpreting the second solar spectrum. For this purpose, it is important to rigorously determine the effects of the isotropic collisions with neutral hydrogen on the atomic po
A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in th
Radiative transfer in hydrogen lines in supernova remnant (SNR) shock waves is studied taking into account the population of the hydrogen atom 2s-state. Measurements of Balmer line emission, especially of H~$alpha$, are often relied upon to derive ph
Recently, the production of ultrahigh-density (~10^{19}cm^{-3}) spin-polarized deuterium (SPD) atoms was demonstrated, from the photodissociation of deuterium iodide, but the upper density limit was not determined. Here, we present studies of spin-po