ﻻ يوجد ملخص باللغة العربية
Tenuous dust clouds of Jupiters Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the dust clouds surrounding the moons by their impact direction, impact velocity, and mass distribution. Average particle sizes are 0.5 to $rm 1 mu m$, just above the detector threshold, indicating a size distribution with decreasing numbers towards bigger particles. Our results imply that the particles have been kicked up by hypervelocity impacts of micrometeoroids onto the satellites surfaces. The measured radial dust density profiles are consistent with predictions by dynamical modeling for satellite ejecta produced by interplanetary impactors (Krivov et al., PSS, 2003, 51, 251--269), assuming yield, mass and velocity distributions of the ejecta from laboratory measurements. The dust clouds of the three outer Galilean moons have very similar properties and are in good agreement with the model predictions for solid ice-silicate surfaces. The dust density in the vicinity of Io, however, is more than an order of magnitude lower than expected from theory. This may be due to a softer, fluffier surface of Io (volcanic deposits) as compared to the other moons. The log-log slope of the dust number density in the clouds vs. distance from the satellite center ranges between --1.6 and --2.8. Appreciable variations of number densities obtained from individual flybys with varying geometry, especially at Callisto, might be indicative of leading-trailing asymmetries of the clouds due to the motion of the moons with respect to the field of impactors.
The technique of mutual approximations accurately gives the central instant at the maximum apparent approximation of two moving natural satellites in the sky plane. This can be used in ephemeris fitting to infer the relative positions between satelli
Typically we can deliver astrometric positions of natural satellites with errors in the 50-150 mas range. Apparent distances from mutual phenomena, have much smaller errors, less than 10 mas. However, this method can only be applied during the equino
We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary body of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small s
Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measuremen
Current lunar origin scenarios suggest that Earths Moon may have resulted from the merger of two (or more) smaller moonlets. Dynamical studies of multiple moons find that these satellite systems are not stable, resulting in moonlet collision or loss