Atomic Calculations and Spectral Models of X-ray Absorption and Emission Features From Astrophysical Photoionized Plasmas


الملخص بالإنكليزية

We present a detailed model of the discrete X-ray spectroscopic features expected from steady-state, low-density photoionized plasmas. We apply the Flexible Atomic Code (FAC) to calculate all of the necessary atomic data for the full range of ions relevant for the X-ray regime. These calculations have been incorporated into a simple model of a cone of ions irradiated by a point source located at its tip (now available as the XSPEC model PHOTOION). For each ionic species in the cone, photoionization is balanced by recombination and ensuing radiative cascades, and photoexcitation of resonance transitions is balanced by radiative decay. This simple model is useful for diagnosing X-ray emission mechanisms, determining photoionization/photoexcitation/recombination rates, fitting temperatures and ionic emission measures, and probing geometrical properties (covering factor/column densities/radial filling factor/velocity distributions) of absorbing/reemitting regions in photoionized plasmas. Such plasmas have already been observed in diverse astrophysical X-ray sources, including active galactic nuclei, X-ray binaries, cataclysmic variables, and stellar winds of early-type stars, and may also provide a significant contribution to the X-ray spectra of gamma-ray-burst afterglows and the intergalactic medium.

تحميل البحث