ﻻ يوجد ملخص باللغة العربية
With the goal of producing a reliable set of model atoms and singly-ionized ions for use in building NLTE model atmospheres, we have combined measured energy levels, critically-compiled line transition probabilities, and resonance-averaged calculations of photoionization cross-sections. A majority of the elements from Li to Ca are considered, covering most of the important species in late-type atmospheres. These include elements which contribute free electrons and/or continuous opacity in the ultraviolet (e.g., Mg, and Si), as well as trace elements whose abundance determinations rely on ultraviolet lines (e.g., B from B I lines). The new data complement and, for the species in common, supersede a previous collection of model atoms originally designed for use in studies of early-type stars.
We test our knowledge of the atomic opacity in the solar UV spectrum. Using the atomic data compiled in Paper I from modern, publicly available, databases, we perform calculations that are confronted with space-based observations of the Sun. At wavel
Older GCE models predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 $AA$ resonance line, and the discrepancy between models and observations is
The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consumin
We investigated the copper abundances for $64$ late-type stars in the Galactic disk and halo with effective temperatures from $5400$ K to $6700$ K and [Fe/H] from $-1.88$ to $-0.17$. For the first time, the copper abundances are derived using both lo
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present