ترغب بنشر مسار تعليمي؟ اضغط هنا

The Munich Near-Infrared Cluster Survey (MUNICS) - V. The evolution of the rest-frame K-band and J-band galaxy luminosity functions to z ~ 0.7

76   0   0.0 ( 0 )
 نشر من قبل Georg Feulner
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Feulner




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

57 - N. Drory 2003
(Abriged) We present a measurement of the evolution of the rest-frame K-band luminosity function to z ~ 1.2 using a sample of more than 5000 K-selected galaxies drawn from the MUNICS dataset. Distances and absolute K-band magnitudes are derived using photometric redshifts from spectral energy distribution fits to BVRIJK photometry. These are calibrated using >500 spectroscopic redshifts. We obtain redshift estimates having a rms scatter of 0.055 and no mean bias. We use Monte-Carlo simulations to investigate the influence of the errors in distance associated with photometric redshifts on our ability to reconstruct the shape of the luminosity function. Finally, we construct the rest-frame K-band LF in four redshift bins spanning 0.4<z<1.2 and compare our results to the local luminosity function. We discuss and apply two different estimators to derive likely values for the evolution of the number density, Phi*, and characteristic luminosity, M*, with redshift. While the first estimator relies on the value of the luminosity function binned in magnitude and redshift, the second estimator uses the individually measured {M,z} pairs alone. In both cases we obtain a mild decrease in number density by ~ 25% to z=1 accompanied by brightening of the galaxy population by 0.5 to 0.7 mag. These results are fully consistent with an analogous analysis using only the spectroscopic MUNICS sample. The total K-band luminosity density is found to scale as dlog(rho_L)/dz = 0.24. We discuss possible sources of systematic errors and their influence on our parameter estimates.
366 - N. Drory 2004
We present a measurement of the evolution of the stellar mass function in four redshift bins at 0.4 < z < 1.2 using a sample of more than 5000 K-selected galaxies drawn from the MUNICS dataset. Our data cover the stellar mass range 10^10 < M/Msun < 1 0^12. We derive K-band mass-to-light ratios by fitting a grid of composite stellar population models of varying star formation history, age, and dust extinction to BVRIJK photometry. We discuss the evolution of the average mass-to-light ratio as a function of galaxy stellar mass in the K-band and in the B-band. We compare our stellar mass function at z > 0 to estimates obtained similarly at z=0. We find that the mass-to-light ratios in the K-band decline with redshift. This decline is similar for all stellar masses above $10^10 Msun. Lower mass galaxies have lower mass-to-light ratios at all redshifts. The stellar mass function evolves significantly to z = 1.2. The total normalization decreases by a factor of ~2, the characteristic mass (the knee) shifts towards lower masses and the bright end therefore steepens with redshift. The amount of number density evolution is a strong function of stellar mass, with more massive systems showing faster evolution than less massive systems. We discuss the total stellar mass density of the universe and compare our results to the values from the literature both at lower and higher redshift. We find that the stellar mass density at z~1 is roughly 50% of the local value. Our results imply that the mass assembly of galaxies continues well after $z sim 1$. Our data favor a scenario in which the growth of the most massive galaxies is dominated by accretion and merging rather than star formation which plays a larger role in the growth of less massive systems.
60 - N. Drory 2001
We derive the number density evolution of massive field galaxies in the redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically calibrated photometric re dshifts to determine distances and absolute magnitudes in the rest-frame K-band. To assign mass-to-light ratios, we use an approach which maximizes the stellar mass for any K-band luminosity at any redshift. We take the mass-to-light ratio, M/L_K, of a Simple Stellar Population (SSP) which is as old as the universe at the galaxys redshift as a likely upper limit. This is the most extreme case of pure luminosity evolution and in a more realistic model M/L_K will probably decrease faster with redshift due to increased star formation. We compute the number density of galaxies more massive than 2 10^10 h^-2 solar masses, 5 10^10 h^-2 solar masses, and 1 10^11 h^-2 solar masses, finding that the integrated stellar mass function is roughly constant for the lowest mass limit and that it decreases with redshift by a factor of roughly 3 and by a factor of roughly 6 for the two higher mass limits, respectively. This finding is in qualitative agreement with models of hierarchical galaxy formation, which predict that the number density of ~ M* objects is fairly constant while it decreases faster for more massive systems over the redshift range our data probe.
We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availabilit y of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the four redshift bins 1.5<z<2.0, 2.0<z<2.5, 2.5<z<3.0 and 3.0<z<3.5. Combining our results with those already available at lower redshifts, we find that (1) the faint end slope is consistent with being constant up to z=3.5, with alpha=-1.05+/-0.03 for the rest-frame J band and alpha=-1.15+/-0.02 for the rest-frame H band; (2) the normalization phi* decreases by a factor of 6 between z=0 and z~1.75 and by a factor 3 between z~1.75 and z=3.25; (3) the characteristic magnitude M* shows a brightening from z=0 to z~2 followed by a slow dimming to z=3.25. We finally compute the luminosity density (LD) in both rest-frame J and H bands. The analysis of our results together with those available in the literature shows that the LD is approximately constant up to z~1, and it then decreases by a factor of 6 up to z=3.5.
64 - N. Drory 1999
The Munich Near-IR Cluster Survey (MUNICS) is a K selected survey covering 1 square degree in the K and J NIR bands with complementary optical photometry in the V, R, and I bands covering a subarea of 0.35 square degrees. The 3-sigma limiting magnitu de is 19.5 in K. The main goals of the project are the identification of clusters of galaxies at redshifts 0.6<z<1.0 and the study of the evolution of the early-type field population at similar redshifts. Here we present first results regarding color distributions and the surface densities of EROs as well as photometric redshifts and a first clustering analysis of the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا