ﻻ يوجد ملخص باللغة العربية
We use a high resolution $Lambda$CDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of fifteen, in a 50 $h^{-1}$Mpc volume containing 80 million particles. Our low redshift results allow us to probe low $sigma$ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth and Tormen mass function provides an excellent match to all of our data except for redshifts of ten and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 percent for the $10^{10}-10^{11} msun$ haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth and Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high redshift (z $simeq$ 6) QSOs, which are thought to be hosted by haloes at 5$sigma$ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50%. We test the sensitivity of our results to force accuracy, starting redshift, and halo finding algorithm.
[ABRIDGED] The unconditional mass function (UMF) of dark matter haloes has been determined accurately in the literature, showing excellent agreement with high resolution numerical simulations. However, this is not the case for the conditional mass fu
Galaxy clusters are luminous tracers of the most massive dark matter haloes in the Universe. To use them as a cosmological probe, a detailed description of the properties of dark matter haloes is required. We characterize how the dynamical state of h
Virial mass is used as an estimator for the mass of a dark matter halo. However, the commonly used constant overdensity criterion does not reflect the dynamical structure of haloes. Here we analyze dark matter cosmological simulations in order to obt
We use numerical simulations in a Lambda CDM cosmology to model density profiles in a set of 16 dark matter haloes with resolutions of up to 7 million particles within the virial radius. These simulations allow us to follow robustly the formation and
We use the halo occupation distribution (HOD) framework to characterise the predictions from two independent galaxy formation models for the galactic content of dark matter haloes and its evolution with redshift. Our galaxy samples correspond to a ra