ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-metallicity stars II. Evolution of very massive objects with mass loss

84   0   0.0 ( 0 )
 نشر من قبل Marigo Paola
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Marigo -




اسأل ChatGPT حول البحث

We present evolutionary models of zero-metallicity very massive objects, with initial masses in the range 120 Msun -- 1000 Msun, covering their quiescent evolution up to central carbon ignition. In the attempt of exploring the possible occurrence of mass loss by stellar winds, calculations are carried out with recently-developed formalisms for the mass-loss rates driven by radiation pressure (Kudritzki 2002) and stellar rotation (Maeder & Meynet 2000).The study completes the previous analysis by Marigo et al. (2001) on the constant-mass evolution of primordial stars. Our results indicate that radiation pressure (assuming a minimum metallicity Z = 10^{-4} Zsun)is not an efficient driving force of mass loss, except for very massive stars with M >= 750 Msun. On the other hand, stellar rotation might play a crucial role in triggering powerful stellar winds, once the (Omega-Gamma)-limit is approached. However, this critical condition of intense mass loss can be maintained just for short, as the loss of angular momentum due to mass ejection quickly leads to the spinning down of the star. As by-product to the present work, the wind chemical yields from massive zero-metallicity stars are presented. The helium and metal enrichments, and the resulting Delta(Y)/Delta(Z) ratio are briefly discussed.



قيم البحث

اقرأ أيضاً

128 - P. Marigo 2002
We discuss the evolutionary properties of primordial massive and very massive stars, supposed to have formed from metal-free gas. Stellar models are presented over a large range of initial masses (8 Msun <= Mi <= 1000 Msun), covering the hydrogen- an d helium-burning phases up to the onset of carbon burning. In most cases the evolution is followed at constant mass. To estimate the possible effect of mass loss via stellar winds, recent analytic formalisms for the mass-loss rates are applied to the very massive models (Mi >= 120 Msun).
227 - Jorick S. Vink 2014
We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.
246 - Paola Marigo 2001
We present extensive evolutionary models of stars with initial zero-metallicity, covering a large range of initial masses (i.e. 0.7 <= M <= 100 Msun). Calculations are carried out at constant mass, with updated input physics, and applying an overshoo ting scheme to convective boundaries. The nuclear network includes all the important reactions of the p-p chain, CNO-cycle and alpha-captures, and is solved by means of a suitable semi-implicit method. The evolution is followed up to the thermally pulsing AGB in the case of low- and intermediate-mass stars, or to the onset of carbon burning in massive stars. The main evolutionary features of these models are discussed, also in comparison with models of non-zero metallicity. Among several interesting aspects, particular attention has been paid to describe: i) the first synthesis of 12C inside the stars, that may suddenly trigger the CNO-cycle causing particular evolutionary features; ii) the pollution of the stellar surface by the dredge-up events, that are effective only within particular mass ranges; iii) the mass limits which conventionally define the classes of low-, intermediate-, and high-mass stars on the basis of common evolutionary properties, including the upper mass limit for the achievement of super-Eddington luminosities before C-ignition in the high-mass regime; and iv) the expected pulsational properties of zero-metallicity stars. All relevant information referring to the evolutionary tracks and isochrones is made available in computer-readable format at http://pleiadi.pd.astro.it .
146 - Jorick S. Vink 2008
We discuss the role of mass loss for the evolution of the most massive stars, highlighting the role of the predicted bi-stability jump that might be relevant for the evolution of rotational velocities during or just after the main sequence. This mech anism is also proposed as an explanation for the mass-loss variations seen in the winds from Luminous Blue Variables (LBVs). These might be relevant for the quasi-sinusoidal modulations seen in a number of recent transitional supernovae (SNe), as well as for the double-throughed absorption profile recently discovered in the Halpha line of SN 2005gj. Finally, we discuss the role of metallicity via the Z-dependent character of their winds, during both the initial and final (Wolf-Rayet) phases of evolution, with implications for the angular momentum evolution of the progenitor stars of long gamma-ray bursts (GRBs).
76 - S. E. Woosley 2019
The evolution of helium stars with initial masses in the range 1.6 to 120 Msun is studied, including the effects of mass loss by winds. These stars are assumed to form in binary systems when their expanding hydrogenic envelopes are promptly lost just after helium ignition. Significant differences are found with single star evolution, chiefly because the helium core loses mass during helium burning rather than gaining it from hydrogen shell burning. Consequently presupernova stars for a given initial mass function have considerably smaller mass when they die and will be easier to explode. Even accounting for this difference, the helium stars with mass loss develop more centrally condensed cores that should explode more easily than their single-star counterparts. The production of low mass black holes may be diminished. Helium stars with initial masses below 3.2 Msun experience significant radius expansion after helium depletion, reaching blue supergiant proportions. This could trigger additional mass exchange or affect the light curve of the supernova. The most common black hole masses produced in binaries is estimated to be about 9 Msun. A new maximum mass for black holes derived from pulsational pair-instability supernovae is derived - 46 Msun, and a new potential gap at 10 - 12 Msun is noted. Models pertinent to SN 2014ft are presented and a library of presupernova models is generated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا