ﻻ يوجد ملخص باللغة العربية
We present evolutionary models of zero-metallicity very massive objects, with initial masses in the range 120 Msun -- 1000 Msun, covering their quiescent evolution up to central carbon ignition. In the attempt of exploring the possible occurrence of mass loss by stellar winds, calculations are carried out with recently-developed formalisms for the mass-loss rates driven by radiation pressure (Kudritzki 2002) and stellar rotation (Maeder & Meynet 2000).The study completes the previous analysis by Marigo et al. (2001) on the constant-mass evolution of primordial stars. Our results indicate that radiation pressure (assuming a minimum metallicity Z = 10^{-4} Zsun)is not an efficient driving force of mass loss, except for very massive stars with M >= 750 Msun. On the other hand, stellar rotation might play a crucial role in triggering powerful stellar winds, once the (Omega-Gamma)-limit is approached. However, this critical condition of intense mass loss can be maintained just for short, as the loss of angular momentum due to mass ejection quickly leads to the spinning down of the star. As by-product to the present work, the wind chemical yields from massive zero-metallicity stars are presented. The helium and metal enrichments, and the resulting Delta(Y)/Delta(Z) ratio are briefly discussed.
We discuss the evolutionary properties of primordial massive and very massive stars, supposed to have formed from metal-free gas. Stellar models are presented over a large range of initial masses (8 Msun <= Mi <= 1000 Msun), covering the hydrogen- an
We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.
We present extensive evolutionary models of stars with initial zero-metallicity, covering a large range of initial masses (i.e. 0.7 <= M <= 100 Msun). Calculations are carried out at constant mass, with updated input physics, and applying an overshoo
We discuss the role of mass loss for the evolution of the most massive stars, highlighting the role of the predicted bi-stability jump that might be relevant for the evolution of rotational velocities during or just after the main sequence. This mech
The evolution of helium stars with initial masses in the range 1.6 to 120 Msun is studied, including the effects of mass loss by winds. These stars are assumed to form in binary systems when their expanding hydrogenic envelopes are promptly lost just