Optical observations of the bright long duration peculiar GRB 021004 afterglow


الملخص بالإنكليزية

The CCD magnitudes in Johnson $B,V$ and Cousins $R$ and $I$ photometric passbands are determined for the bright long duration GRB 021004 afterglow from 2002 October 4 to 16 starting $sim$ 3 hours after the $gamma-$ray burst. Light curves of the afterglow emission in $B$,$V$,$R$ and $I$ passbands are obtained by combining these measurements with other published data. The earliest optical emission appears to originate in a revese shock. Flux decay of the afterglow shows a very uncommon variation relative to other well-observed GRBs. Rapid light variations, especially during early times ($Delta t < 2$ days) is superposed on an underlying broken power law decay typical of a jetted afterglow. The flux decay constants at early and late times derived from least square fits to the light curve are $0.99pm0.05$ and $2.0pm0.2$ respectively, with a jet break at around 7 day. Comparison with a standard fireball model indicates a total extinction of $E(B-V)=0.20$ mag in the direction of the burst. Our low-resolution spectra corrected for this extinction provide a spectral slope $beta = 0.6pm0.02$. This value and the flux decay constants agree well with the electron energy index $psim 2.27$ used in the model. The derived jet opening angle of about $7^{circ}$ implies a total emitted gamma-ray energy $E_{gamma} = 3.5times10^{50}$ erg at a cosmological distance of about 20 Gpc. Multiwavelength observations indicate association of this GRB with a star forming region, supporting the case for collapsar origin of long duration GRBs.

تحميل البحث