ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Populations and Star Cluster Formation in Interacting Galaxies with the Advanced Camera for Surveys

75   0   0.0 ( 0 )
 نشر من قبل Richard de Grijs
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Richard de Grijs




اسأل ChatGPT حول البحث

Pixel-by-pixel colour-magnitude and colour-colour diagrams - based on a subset of the Hubble Space Telescope Advanced Camera for Surveys Early Release Observations - provide a powerful technique to explore and deduce the star and star cluster formation histories of the Mice and the Tadpole interacting galaxies. In each interacting system we find some 40 bright young star clusters (20 <= F606W (mag) <= 25, with a characteristic mass of ~3 x 10^6 Msun), which are spatially coincident with blue regions of active star formation in their tidal tails and spiral arms. We estimate that the main events triggering the formation of these clusters occurred ~(1.5-2.0) x 10^8 yr ago. We show that star cluster formation is a major mode of star formation in galaxy interactions, with >= 35% of the active star formation in encounters occurring in star clusters. This is the first time that young star clusters have been detected along the tidal tails in interacting galaxies. The tidal tail of the Tadpole system is dominated by blue star forming regions, which occupy some 60% of the total area covered by the tail and contribute ~70% of the total flux in the F475W filter (decreasing to ~40% in F814W). The remaining pixels in the tail have colours consistent with those of the main disk. The tidally triggered burst of star formation in the Mice is of similar strength in both interacting galaxies, but it has affected only relatively small, spatially coherent areas.



قيم البحث

اقرأ أيضاً

We present the first Advanced Camera for Surveys (ACS) observations of young star clusters in the colliding/merging galaxy UGC 10214. The observations were made as part of the Early Release Observation (ERO) program for the newly installed ACS during service mission SM3B for the Hubble Space Telescope (HST). Many young star clusters can be identified in the tails of UGC 10214, with ages ranging from ~3 Myr to 10 Myr. The extreme blue V-I (F606W-F814W) colors of the star clusters found in the tail of UGC 10214 can only be explained if strong emission lines are included with a young stellar population. This has been confirmed by our Keck spectroscopy of some of these bright blue stellar knots. The most luminous and largest of these blue knots has an absolute magnitude of M_V = -14.45, with a half-light radius of 161 pc, and if it is a single star cluster, would qualify as a super star cluster (SSC). Alternatively, it could be a superposition of multiple scaled OB associations or clusters. With an estimated age of ~ 4-5 Myr, its derived mass is < 1.3 x 10^6 solar masses. Thus the young stellar knot is unbound and will not evolve into a normal globular cluster. The bright blue clusters and associations are much younger than the dynamical age of the tail, providing strong evidence that star formation occurs in the tail long after it was ejected. UGC 10214 provides a nearby example of processes that contributed to the formation of halos and intra-cluster media in the distant and younger Universe.
(Abridged) We present a study of the optical spectra of a sample of eight star-forming nuclear rings and the nuclei of their host galaxies. The spectra were obtained with the ISIS spectrograph on the William Herschel Telescope and cover a wide range in wavelength, enabling the measurement of several stellar absorption features and gas emission lines. We compared the strength of the absorption lines to a variety of population synthesis models for the star-formation history in the nuclear rings, including also the contribution of the older bulge and disc stellar components. We find that the stars in our sample of nuclear rings have most likely formed over a prolonged period of time characterised by episodic bursts of star-formation activity. Constant star formation is firmly ruled out by the data, whereas a one-off formation event is an unlikely explanation for a common galactic component such as nuclear rings. We have used emission-line measurements to constrain the physical conditions of the ionised gas within the rings. Emission in all nuclear rings originates from HII-regions with electron densities typical for these kinds of objects, and that the rings are characterised by values for the gas metallicity ranging from slightly below to just above solar. As 20% of nearby spiral galaxies hosts nuclear rings that are currently forming massive stars, our finding of an episodic star formation history in nuclear rings implies that a significant population remains to be identified of young nuclear rings that are not currently in a massive star formation phase.
84 - A. Pasquali 2005
The Advanced Camera for Surveys on-board HST is equipped with a set of one grism and three prisms for low-resolution, slitless spectroscopy in the range 1150 Ang. to 10500 Ang. The G800L grism provides optical spectroscopy between 5500 Ang. and 1 mic ron with a mean dispersion of 39 Ang./pix and 24 Ang./pix (in the first spectral order) when coupled with the Wide Field and the High Resolution Channels, respectively. Given the lack of any on-board calibration lamps for wavelength and narrow band flat-fielding, the G800L grism can only be calibrated using astronomical targets. In this paper, we describe the strategy used to calibrate the grism in orbit, with special attention to the treatment of the field dependence of the grism flat-field, wavelength solution and sensitivity in both Channels.
129 - Joel C. Roediger 2010
We use a combination of deep optical and near-infrared light profiles for a morphologically diverse sample of Virgo cluster galaxies to study the radially-resolved stellar populations of cluster galaxies over a wide range of galaxy structure. We find that, in the median, the age gradients of Virgo galaxies are either flat (lenticulars and Sa-Sb spirals) or positive (ellipticals, Sbc+Sc spirals, gas-rich dwarfs, and irregulars), while all galaxy types have a negative median metallicity gradient. Comparison of the galaxy stellar population diagnostics (age, metallicity, and gradients thereof) against structural and environmental parameters also reveals that the ages of gas-rich systems depend mainly on their atomic gas deficiencies. Conversely, the metallicities of Virgo gas-poor galaxies depend on their concentrations, luminosities, and surface brightnesses. The stellar population gradients of all Virgo galaxies exhibit no dependence on either their structure or environment. We interpret these stellar population data for Virgo galaxies in the context of popular formation and evolution scenarios, and suggest that gas-poor giants grew hierarchically (through dissipative starbursts), gas-poor dwarfs have descended from at least two different production channels (e.g., environmental transformation and merging), while spirals formed inside-out, but with star formation in the outskirts of a significant fraction of the population having been quenched due to ram pressure stripping. (Abridged)
We present the integrated properties of the stellar populations in the Universidad Complutense de Madrid Survey galaxies. Applying the techniques described in the first paper of this series, we derive ages, burst masses and metallicities of the newly -formed stars in our sample galaxies. The population of young stars is responsible for the Halpha emission used to detect the objects in the UCM Survey. We also infer total stellar masses and star formation rates in a consistent way taking into account the evolutionary history of each galaxy. We find that an average UCM galaxy has a total stellar mass of ~1E10 Msun, of which about 5% has been formed in an instantaneous burst occurred about 5 Myr ago, and sub-solar metallicity. Less than 10% of the sample shows massive starbursts involving more than half of the total mass of the galaxy. Several correlations are found among the derived properties. The burst strength is correlated with the extinction and with the integrated optical colours for galaxies with low obscuration. The current star formation rate is correlated with the gas content. A stellar mass-metallicity relation is also found. Our analysis indicates that the UCM Survey galaxies span a broad range in properties between those of galaxies completely dominated by current/recent star formation and those of normal quiescent spirals. We also find evidence indicating that star-formation in the local universe is dominated by galaxies considerably less massive than L*.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا