ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chemistry of Extragalactic Globular Clusters

45   0   0.0 ( 0 )
 نشر من قبل Markus Kissler-Patig
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.Kissler-Patig




اسأل ChatGPT حول البحث

We present preliminary results of VLT/FORS spectroscopy of globular clusters in nearby early-type galaxies. Our project aims at studying the chemistry and determine the ages of globular cluster (sub-)populations. First results indicate that the different galaxies host from little to significant intermediate-age populations, and that the latter have alpha-element over iron ratios closer to solar than the old population that show an alpha-element enhancement similar to the diffuse stellar light.



قيم البحث

اقرأ أيضاً

63 - Charli M. Sakari 2019
Integrated light (IL) spectroscopy enables studies of stellar populations beyond the Milky Way and its nearest satellites. In this paper, I will review how IL spectroscopy reveals essential information about globular clusters and the assembly histori es of their host galaxies, concentrating particularly on the metallicities and detailed chemical abundances of the GCs in M31. I will also briefly mention the effects of multiple populations on IL spectra, and how observations of distant globular clusters help constrain the source(s) of light-element abundance variations. I will end with future perspectives, emphasizing how IL spectroscopy can bridge the gap between Galactic and extragalactic astronomy.
206 - M. Hilker 2009
In the last decade, a new kind of stellar systems has been established that shows properties in between those of globular clusters (GCs) and early-type dwarf galaxies. These so-called ultra-compact dwarf galaxies (UCDs) have masses in the range 10^6 to 10^8 M_sun and half-light radii of 10-100 pc. The most massive UCDs known to date are predominantly metal-rich and reside in the cores of nearby galaxy clusters. The question arises whether UCDs are just the most massive globular clusters in rich globular cluster systems? Although UCDs and `normal GCs form a continuous sequence in several parameter spaces, there seems to be a break in the scaling laws for stellar systems with masses above ~2.5x10^6 M_sun. Unlike GCs, UCDs follow a mass-size relation and their mass-to-light ratios are about twice as large as those of GCs with comparable metallicities. In this contribution, I present the properties of the brightest globular clusters and ultra-compact dwarf galaxies and discuss whether the observed findings are compatible with a `star-cluster origin of UCDs or whether they are more likely related to dark matter dominated dwarf galaxies.
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info rm event predictions for gravitational wave facilities. Reaching a large number of GCs per galaxy is key, as models predict that only a few percent will have retained their gravitational-wave fostering IMBHs. Related, many galaxies will need to be examined to establish a robust sample of IMBHs in GCs. These needs can be meet by using a next-generation Very Large Array (ngVLA) to search for IMBHs in the GCs of hundreds of galaxies out to a distance of 25 Mpc. These galaxies hold tens of thousands of GCs in total. We describe how to convert an ngVLA signal from a GC to an IMBH mass according to a semi-empirical accretion model. Simulations of gas flows in GCs would help to improve the robustness of the conversion. Also, self-consistent dynamical models of GCs, with stellar and binary evolution in the presence of IMBHs, would help to improve IMBH retention predictions for present-day GCs.
The recent measurements of internal variations of helium in Galactic and extragalactic Globular Clusters (GCs) set binding constraints to the models of formation of Multiple Populations (MPs) in GCs, and gave rise, at the same time, to crucial questi ons related with the influence of the environment on MP formation as well as with the role played by GCs in the early galactic formation. We present the most recent estimates of helium enrichment in the main populations of a large sample of Galactic and extragalactic GCs.
A number of ultraluminous X-ray sources (ULXs) are physically associated with extragalactic globular clusters (GCs). We undertake a systematic X-ray analysis of eight of the brightest of these sources. We fit the spectra of the GC ULXs to single powe r law and single disk models. We find that the data never require that any of the sources change between a disk and a power law across successive observations. The GC ULXs best fit by a single disk show a bimodal distribution: they either have temperatures well below 0.5 keV, or variable temperatures ranging above 0.5 keV up to 2~keV. The GC ULXs with low kT have significant changes in luminosity but show little or no change in kT. By contrast, the sources with higher kT either change in both kT and $L_X$ together, or show no significant change in either parameter. Notably, the X-ray characteristics may be related to the optical properties of these ULXs, with the two lowest kT sources showing optical emission lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا