ﻻ يوجد ملخص باللغة العربية
We present a study of the source positioning accuracy of the LECS and MECS instruments on-board BeppoSAX. From the analysis of a sample of archival images we find that a systematic error, which depends on the spacecraft roll angle and has an amplitude of ~17 for the LECS and ~27 for the MECS, affects the sky coordinates derived from both instruments. The error is due to a residual misalignment of the two instruments with respect to the spacecraft Z axis arisen from the presence of attitude inaccuracies in the observations used to calibrate the pointing direction of LECS and MECS optical axes. Analytical formulae to correct LECS and MECS sky coordinates are derived. After the coordinate correction the 90% confidence level error radii are 16 and 17 for LECS and MECS respectively, improving by a factor of ~2 the source location accuracy of the two instruments. The positioning accuracy improvement presented here can significantly enhance the follow-up studies at other wavelengths of the X-ray sources observed with LECS and MECS instruments.
In this contribution we discuss briefly a few calibration items relevant to the data analysis and present some preliminary scientific results. The discussion on instrumental topics focuses on the response matrix and Point Spread Function (PSF). In th
We report on a BeppoSAX Low-Energy Concentrator Spectrometer (LECS) observation of the super-soft source (SSS) CAL83. The X-ray emission in SSS is believed to arise from nuclear burning of accreted material on the surface of a white dwarf (WD). The L
The Super Soft Source RX J0925.7--4758 was observed by BeppoSAX LECS and MECS on January 25--26 1997. The source was clearly detected by the LECS but only marginally detected by the MECS. We apply detailed Non-Local Thermodynamic Equilibrium (Non-LTE
The wave-function-matching (WFM) technique for first-principles transport-property calculations was modified by So{}rensen {it et al.} so as to exclude rapidly decreasing evanescent waves [So{}rensen {it et al.}, Phys. Rev. B {bf 77}, 155301 (2008)].
In this paper, we propose a multi-target image tracking algorithm based on continuously apative mean-shift (Cam-shift) and unscented Kalman filter. We improved the single-lamp tracking algorithm proposed in our previous work to multi-target tracking,