ﻻ يوجد ملخص باللغة العربية
In searches for planetary transits in the field, well over half of the survey stars are typically giants or other stars that are too large to permit straightforward detection of planets. For all-sky searches of bright V<~11 stars, the fraction is ~90%. We show that the great majority of these contaminants can be removed from the sample by analyzing their reduced proper motions (RPMs): giants have much lower RPMs than dwarfs of the same color. We use Hipparcos data to design a RPM selection function that eliminates most evolved stars, while rejecting only 9% of viable transit targets. Our method can be applied using existing or soon-to-be-released all-sky data to stars V<12.5 in the northern hemisphere and V<12 in the south. The method degrades at fainter magnitudes, but does so gracefully. For example, at V=14 it can still be used to eliminate giants redward of V-I~0.95, that is, the blue edge of the red giant clump.
New astrometric reductions of the US Naval Observatory CCD Astrograph Catalog (UCAC) all-sky observations were performed from first principles using the TGAS stars in the 8 to 11 magnitude range as reference star catalog. Significant improvements in
Reduced bases have been introduced for the approximation of parametrized PDEs in applications where many online queries are required. Their numerical efficiency for such problems has been theoretically confirmed in cite{BCDDPW,DPW}, where it is shown
With the release of Gaia DR2, it is now possible to measure the proper motions (PMs) of the lowest mass, ultra-faint satellite galaxies in the Milky Ways (MW) halo for the first time. Many of these faint satellites are posited to have been accreted a
We quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Veron-Cetty & Veron Catalog of Quasars. Although the majority of the sources are from the Veron catalog, LAM
This article presents results of VLBI observations of regions of H2O maser activity in the Local Group galaxies M33 and IC10. Since all position measurements were made relative to extragalactic background sources, the proper motions of the two galaxi