ﻻ يوجد ملخص باللغة العربية
The spectral evolution of the peculiar SN Ic 2002ap during the first 40 days is presented. The spectra display very broad absorption features, which are typical of hypernovae. The maximum expansion velocity measured on the earliest spectra exceeds 3 times 10^4 km s^{-1}. The spectrum of SN 2002ap at the epoch of maximum brightness resembles that of SN 1997ef more than that of SN 1998bw. The spectral evolution of SN 2002ap proceeds at about 1.5 times the rate of SN 1997ef. The parameterized supernova spectrum synthesis code SYNOW was used to perform line identification and deduce velocity information from the early-phase spectra, which are heavily affected by line blending. The photospheric velocity, as deduced from the fitting results and from the blueshift of the ion{Si}{2} lambda 6355 absorption minimum, is lower than in previously studied hypernovae. At advanced epochs, the ion{Si}{2} lambda 6355 absorption minimum becomes difficult to distinguish. This may be caused by the growth of [ion{O}{1}] lambda lambda 6300, 6364 emission. Together with the rapid spectral evolution, this suggests that SN 2002ap should enter the nebular phase sooner than previously studied hypernovae.
Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the hy
The supernova SN 2002ap was discovered in the outer regions of the nearby spiral M74 on January 29.4 UT. Early photometric and spectroscopic observations indicate the supernova belongs to the class of Ic hypernova. Late time (After JD 2452500) light
The nebular spectra of the broad-lined, SN 1998bw-like Type Ic SN 2002ap are studied by means of synthetic spectra. Two different modelling techniques are employed. In one technique, the SN ejecta are treated as a single zone, while in the other a de
We present spectropolarimetry of the Type Ic supernova SN 2002ap and give a preliminary analysis: the data were taken at two epochs, close to and one month later than the visual maximum (2002 February 8). In addition we present June 9 spectropolarime
Optical and near-infrared photometry and optical spectroscopy are reported for SN 2003bg, starting a few days after explosion and extending for a period of more than 300 days. Our early-time spectra reveal the presence of broad, high-velocity Balmer