ترغب بنشر مسار تعليمي؟ اضغط هنا

The COMBO-17 Survey: Evolution of the Galaxy Luminosity Function from 25,000 Galaxies with 0.2<z<1.2

103   0   0.0 ( 0 )
 نشر من قبل Christian Wolf
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Wolf




اسأل ChatGPT حول البحث

We present a detailed empirical assessment of how the galaxy luminosity function and stellar luminosity density evolves over the last half of the universes age (0.2<z<1.2) for galaxies of different spectral energy distributions (SED). The results are based on ~25,000 galaxies (R<24) with redshift measurements (sigma_z~0.03) and SEDs across 350..930 nm, derived from medium-band photometry in 17 filters, observed as part of the COMBO-17 survey (``Classifying Objects by Medium-Band Observations in 17 Filters) over three disjoint fields with a total area of 0.78 square degrees. Luminosity functions (LF), binned in redshift and SED-type, are presented in the restframe passbands of the SDSS r-band, the Johnson B-band and a synthetic UV continuum band at 280 nm. We find that the luminosity function depends strongly on SED-type at all redshifts covered. The shape of the LF, i.e. the faint-end power-law slope, does depend on SED type, but not on redshift. However, the redshift evolution of the characteristic luminosity M* and density phi* depends strongly on SED-type: (1) Early-type galaxies, defined as redder than a present-day reference Sa spectrum, become drastically more abundant towards low redshift, by a factor of 10 in the number density phi* from z=1.1 to now, and by a factor of 4 in their contribution to the co-moving r-band luminosity density, j_r. (2) Galaxies resembling present-day Sa- to Sbc-colours show a co-moving number density and contribution to j_r that does not vary much with redshift. (3) Galaxies with blue spectra reflecting strong star formation decrease towards low redshift both in luminosity and density, and by a factor of 4 in their j_r contribution. (abridged)



قيم البحث

اقرأ أيضاً

71 - H.-W. Chen 2001
We present results from the Las Campanas Infrared Survey, designed to identify a statistically significant sample of z>=1 galaxies using photometric redshift techniques. Here we summarize the design and strategies of the survey and present the first estimate of the galaxy luminosity function at z>=1 based on H-band selected galaxies identified in our survey. Results of number count studies and luminosity function measurements indicate that most early-type galaxies were already in place by z~1.2 with a modest space density evolution and a mild luminosity evolution over that expected from passive evolution.
50 - O. Ilbert , S. Lauger , L. Tresse 2006
We have computed the evolution of the rest-frame B-band luminosity function (LF) for bulge and disk-dominated galaxies since z=1.2. We use a sample of 605 spectroscopic redshifts with I_{AB}<24 in the Chandra Deep Field South from the VIMOS-VLT Deep Survey, 3555 galaxies with photometric redshifts from the COMBO-17 multi-color data, coupled with multi-color HST/ACS images from the Great Observatories Origin Deep Survey. We split the sample in bulge- and disk-dominated populations on the basis of asymmetry and concentration parameters measured in the rest-frame B-band. We find that at z=0.4-0.8, the LF slope is significantly steeper for the disk-dominated population (alpha=-1.19 pm 0.07) compared to the bulge-dominated population (alpha=-0.53 pm 0.13). The LF of the bulge-dominated population is composed of two distinct populations separated in rest-frame color: 68% of red (B-I)_{AB}>0.9 and bright galaxies showing a strongly decreasing LF slope alpha=+0.55 pm 0.21, and 32% of blue (B-I)_{AB}<0.9 and more compact galaxies which populate the LF faint-end. We observe that red bulge-dominated galaxies are already well in place at z~1, but the volume density of this population is increasing by a factor 2.7 between z~1 and z~0.6. It may be related to the building-up of massive elliptical galaxies in the hierarchical scenario. In addition, we observe that the blue bulge-dominated population is dimming by 0.7 magnitude between z~1 and z~0.6. Galaxies in this faint and more compact population could possibly be the progenitors of the local dwarf spheroidal galaxies.
57 - N. Drory 2003
(Abriged) We present a measurement of the evolution of the rest-frame K-band luminosity function to z ~ 1.2 using a sample of more than 5000 K-selected galaxies drawn from the MUNICS dataset. Distances and absolute K-band magnitudes are derived using photometric redshifts from spectral energy distribution fits to BVRIJK photometry. These are calibrated using >500 spectroscopic redshifts. We obtain redshift estimates having a rms scatter of 0.055 and no mean bias. We use Monte-Carlo simulations to investigate the influence of the errors in distance associated with photometric redshifts on our ability to reconstruct the shape of the luminosity function. Finally, we construct the rest-frame K-band LF in four redshift bins spanning 0.4<z<1.2 and compare our results to the local luminosity function. We discuss and apply two different estimators to derive likely values for the evolution of the number density, Phi*, and characteristic luminosity, M*, with redshift. While the first estimator relies on the value of the luminosity function binned in magnitude and redshift, the second estimator uses the individually measured {M,z} pairs alone. In both cases we obtain a mild decrease in number density by ~ 25% to z=1 accompanied by brightening of the galaxy population by 0.5 to 0.7 mag. These results are fully consistent with an analogous analysis using only the spectroscopic MUNICS sample. The total K-band luminosity density is found to scale as dlog(rho_L)/dz = 0.24. We discuss possible sources of systematic errors and their influence on our parameter estimates.
We have mapped the AGN luminosity function and its evolution between z=1 and z=5 down to apparent magnitudes of $R<24$. Within the GEMS project we have analysed HST-ACS images of many AGN in the Extended Chandra Deep Field South, enabling us to asses s the evolution of AGN host galaxy properties with cosmic time.
We present an observational study of the stellar mass function of satellite galaxies around central galaxies at 0.2<z<1.2. Using statistical background subtraction of contaminating sources we derive satellite stellar mass distributions in four bins o f central galaxy mass in three redshift ranges. Our results show that the stellar mass function of satellite galaxies increases with central galaxy mass, and that the distribution of satellite masses at fixed central mass is at most weakly dependent on redshift. We conclude that the average mass distribution of galaxies in groups is remarkably universal even out to z=1.2 and that it can be uniquely characterized by the group central galaxy mass. This further suggests that as central galaxies grow in stellar mass, they do so in tandem with the mass growth of their satellites. Finally, we classify all galaxies as either star forming or quiescent, and derive the mass functions of each subpopulation separately. We find that the mass distribution of both star forming and quiescent satellites show minimal redshift dependence at fixed central mass. However, while the fraction of quiescent satellite galaxies increases rapidly with increasing central galaxy mass, that of star forming satellites decreases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا