ترغب بنشر مسار تعليمي؟ اضغط هنا

3-D Kinematics of Water Masers in the W51A Region

85   0   0.0 ( 0 )
 نشر من قبل Hiroshi Imai
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report proper motion measurements of water masers in the massive-star forming region W51A and the analyses of the 3-D kinematics of the masers in three maser clusters of W51A (W51 North, Main, and South). In W~51 North, we found a clear expanding flow that has an expansion velocity of ~70 km/s and indicates deceleration. The originating point of the flow coincides within 0.1 as with a silicon-monoxide maser source near the HII region W~51d. In W51 Main, no systematic motion was found in the whole velocity range (158 km/s =< V(lsr) =< -58 km/s) although a stream motion was reported previously in a limited range of the Doppler velocity (54 km/s =< V(lsr) =< 68 kms). Multiple driving sources of outflows are thought to explain the kinematics of W51 Main. In W51 South, an expansion motion like a bipolar flow was marginally visible. Analyses based on diagonalization of the variance-covariance matrix of maser velocity vectors demonstrate that the maser kinematics in W51 North and Main are significantly tri-axially asymmetric. We estimated a distance to W51 North to be 6.1 +/- 1.3 kpc on the basis of the model fitting method adopting a radially expanding flow.



قيم البحث

اقرأ أيضاً

78 - Hiroshi Imai 2003
We report observations of water masers around the semiregular variable RT Virginis (RT Vir), which have been made with the Very Long Baseline Array (VLBA) of the National Radio Astronomy Observatory (NRAO) at five epochs, each separated by three week s of time. We detected about 60 maser features at each epoch. Overall, 61 features, detected at least twice, were tracked by their radial velocities and proper motions. The 3-D maser kinematics exhibited a circumstellar envelope that is expanding roughly spherically with a velocity of about 8 km/s. Asymmetries in both the spatial and velocity distributions of the maser features were found in the envelope, but less significant than that found in other semiregular variables. Systematic radial-velocity drifts of individual maser features were found with amplitudes of <= 2 km/s/yr. For one maser feature, we found a quadratic position shift with time along a straight line on the sky. This apparent motion indicates an acceleration with an amplitude of 33 km/s/yr, implying the passage of a shock wave driven by the stellar pulsation of RT Vir. The acceleration motion is likely seen only on the sky plane because of a large velocity gradient formed in the accelerating maser region. We estimated the distance to RT Vir to be about 220 pc on the basis of both the statistical parallax and model-fitting methods for the maser kinematics.
79 - Rosario Lopez 2004
We present new results on the kinematics of the jet HH 110. New proper motion measurements have been calculated from [SII] CCD images obtained with a time baseline of nearly fifteen years. HH 110 proper motions show a strong asymmetry with respect to the outflow axis, with a general trend of pointing towards the west of the axis direction. Spatial velocities have been obtained by combining the proper motions and radial velocities from Fabry-Perot data. Velocities decrease by a factor ~3 over a distance of ~10$^{18}$ cm, much shorter than the distances expected for the braking caused by the jet/environment interaction. Our results show evidence of an anomalously strong interaction between the outflow and the surrounding environment, and are compatible with the scenario in which HH 110 emerges from a deflection in a jet/cloud collision.
In this paper we present the results of a mid infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the $Spitzer$ IRAC camera, and Gemini mid infrared camera T-ReCS at 7.73, 9.69, 12.33 and 24.56 micron, with spatial resolution of $sim$0.5arcsec, we have identified the mid infrared counterparts of 8 ultracompact HII regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of W51 region, revealing massive young stellar candidates. We modeled the spectral energy distribution of the detected sources suggesting the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS~2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction towards the enigmatic source IRS~2E, which amounts to $sim$60 magnitudes in the $V$ band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of $sim$100 -- 150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid infrared counterpart of a detected source at mm wavelengths that was found by cite{zap08,zap09} to be a massive young stellar object undergoing a high accretion rate.
We study in details a pumping mechanism for the lambda=1.35 cm maser transition 6_16 -> 5_23 in ortho-water based on the difference between gas and dust temperatures. The upper maser level is populated radiatively through 4_14 -> 5_05 and 5_05 -> 6_1 6 transitions. The heat sink is realized by absorbing the 45 mum photons, corresponding to the 5_23 -> 4_14 transition, by cold dust. We compute the inversion of maser level populations in the optically thick medium as a function of the hydrogen concentration, the gas-to-dust mass ratio, and the difference between the gas and the dust temperatures. The main results of numerical simulations are interpreted in terms of a simplified four-level model. We show that the maser strength depends mostly on the product of hydrogen concentration and the dust-to-water mass ratio but not on the size distribution of the dust particles or their type. We also suggest approximate formulae that describe accurately the inversion and can be used for fast calculations of the maser luminosity. Depending on the gas temperature, the maximum maser luminosity is reached when the water concentration N_water ~ 10^6-10^7 cm^-3 times the dust-to-hydrogen mass ratio, and the inversion completely disappears at density just an order of magnitude larger. For the dust temperature of 130 K, the 6_16 -> 5_23 transition becomes inverted already at the temperature difference of Delta T ~1 K, while other possible masing transitions require a larger Delta T > 30 K. We identify the region of the parameter space where other ortho- and para-water masing transitions can appear.
Aims. We present the first three-dimensional internal motions for individual stars in the Draco dwarf spheroidal galaxy. Methods. By combining first-epoch $Hubble$ $Space$ $Telescope$ observations and second-epoch $Gaia$ Data Release 2 positions, we measured the proper motions of $149$ sources in the direction of Draco. We determined the line-of-sight velocities for a sub-sample of $81$ red giant branch stars using medium resolution spectra acquired with the DEIMOS spectrograph at the Keck II telescope. Altogether, this resulted in a final sample of $45$ Draco members with high-precision and accurate 3D motions, which we present as a table in this paper. Results. Based on this high-quality dataset, we determined the velocity dispersions at a projected distance of $sim120$ pc from the centre of Draco to be $sigma_{R} =11.0^{+2.1}_{-1.5}$ km/s, $sigma_{T}=9.9^{+2.3}_{-3.1}$ km/s and $sigma_{LOS}=9.0^{+1.1}_{-1.1}$ km/s in the projected radial, tangential, and line-of-sight directions. This results in a velocity anisotropy $beta=0.25^{+0.47}_{-1.38}$ at $r gtrsim120$ pc. Tighter constraints may be obtained using the spherical Jeans equations and assuming constant anisotropy and Navarro-Frenk-White (NFW) mass profiles, also based on the assumption that the 3D velocity dispersion should be lower than $approx 1/3$ of the escape velocity of the system. In this case, we constrain the maximum circular velocity $V_{max}$ of Draco to be in the range of $10.2-17.0$ km/s. The corresponding mass range is in good agreement with previous estimates based on line-of-sight velocities only. Conclusions. Our Jeans modelling supports the case for a cuspy dark matter profile in this galaxy. Firmer conclusions may be drawn by applying more sophisticated models to this dataset and with new datasets from upcoming $Gaia$ releases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا