ترغب بنشر مسار تعليمي؟ اضغط هنا

Two massive star-forming regions at early evolutionary stages

114   0   0.0 ( 0 )
 نشر من قبل K. J. Brooks
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guido Garay




اسأل ChatGPT حول البحث

We report sensitive ATCA radio-continuum observations toward IRAS 15596-5301 and 16272-4837, two luminous objects (> 2x10^4 Lsun) thought to represent massive star-forming regions in early stages of evolution (due to previously undetected radio emission at the 1-sigma level of 2 mJy per beam). Also reported are 1.2-millimeter continuum and a series of molecular-line observations made with the SEST telescope. For IRAS 15596-5301, the observations reveal the presence of three distinct compact radio-continuum sources associated with a dense molecular core. We suggest that this core contains a cluster of B stars which are exciting compact HII regions that are in pressure equilibrium with the dense molecular surroundings. No radio continuum emission was detected from IRAS 16272-4837 (3-sigma limit of 0.2 mJy). However, a dense molecular core has been detected. The high luminosity and lack of radio emission from this massive core suggests that it hosts an embedded young massive protostar that is still undergoing an intense accretion phase. This scenario is supported by the observed characteristics of the line profiles and the presence of a bipolar outflow detected from observations of the SiO emission. We suggest that IRAS 16272-4837 is a bona fide massive star- forming region in a very early evolutionary stage, being the precursor of an ultra compact HII region.



قيم البحث

اقرأ أيضاً

We have recently completed an observing program with the Australia Telescope Compact Array towards massive star formation regions traced by 6.7 GHz methanol maser emission. We found the molecular cores could be separated into groups based on their as sociation with/without methanol maser and 24 GHz continuum emission. Analysis of the molecular and ionised gas properties suggested the cores within the groups may be at different evolutionary stages. In this contribution we derive the column densities and temperatures of the cores from the NH3 emission and investigate if this can be used as an indicator of the relative evolutionary stages of cores in the sample. The majority of cores are well fit using single-temperature large velocity gradient models, and exhibit a range of temperatures from ~10 K to >200 K. Under the simple but reasonable assumption that molecular gas in the cores will heat up and become less quiescent with age due to feedback from the powering source(s), the molecular gas kinetic temperature combined with information of the core kinematics seems a promising probe of relative core age in the earliest evolutionary stages of massive star formation.
We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e. W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and are located within the same large-scale environment, which allows us to study rotation and outflows as well as chemical properties in an evolutionary sense. While we find multiple mm continuum sources toward all regions, these three sub-regions exhibit different dynamical and chemical properties, which indicates that they are in different evolutionary stages. Even within each subregion, massive cores of different ages are found, e.g. in SMS2, sub-sources from the most evolved UCHII region to potential starless cores exist within 30 000 AU of each other. Outflows and rotational structures are found in SMS1 and SMS2. Evidence for interactions between the molecular cloud and the HII regions is found in the 13CO channel maps, which may indicate triggered star formation.
We have observed the HN13C J=1-0 and DNC J=1-0 lines toward 18 massive clumps, including infrared dark clouds (IRDCs) and high-mass protostellar objects (HMPOs), by using the Nobeyama Radio Observatory 45 m telescope. We have found that the HN13C emi ssion is stronger than the DNC emission toward all the observed sources. The averaged DNC/HNC ratio is indeed lower toward the observed high-mass sources (0.009pm0.005) than toward the low-mass starless and star-forming cores (0.06). The kinetic temperature derived from the NH3 (J, K) = (1, 1) and (2, 2) line intensities is higher toward the observed high-mass sources than toward the low-mass cores. However the DNC/HNC ratio of some IRDCs involving the Spitzer 24 {mu}m sources is found to be lower than that of HMPOs, although the kinetic temperature of the IRDCs is lower than that of the HMPOs. This implies that the DNC/HNC ratio does not depend only on the current kinetic temperature. With the aid of chemical model simulations, we discuss how the DNC/HNC ratio decreases after the birth of protostars. We suggest that the DNC/HNC ratio in star-forming cores depends on the physical conditions and history in their starless-core phase, such as its duration time and the gas kinetic temperature.
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum mode l to the 3.6 $mu$m through 10 mm spectral energy distributions, we find that ${sim}34$% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ${sim}68$% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates $N_C ge 10^{50}~{rm s}^{-1}$ and dust-processed $L_{rm TIR}ge 10^{6.8}$ L$_{odot}$) have on average higher percentages of absorbed Lyman continuum photons ($sim$51%) and reprocessed starlight ($sim$82%) compared to less luminous regions. Luminous H II regions show lower average PAH fractions than less luminous regions, implying that the strong radiation fields from early-type massive stars are efficient at destroying PAH molecules. On average, the monochromatic luminosities at 8, 24, and 70 $mu$m combined carry 94% of the dust-reprocessed $L_{rm TIR}$. $L_{70}$ captures ${sim}52$% of $L_{rm TIR}$, and is therefore the preferred choice to infer the bolometric luminosity of dusty star-forming regions. We calibrate SFRs based on $L_{24}$ and $L_{70}$ against the Lyman continuum photon rates of the massive stars in each region. Standard extragalactic calibrations of monochromatic SFRs based on population synthesis models are generally consistent with our values.
200 - P.D. Klaassen , C.D. Wilson 2007
In order to distinguish between the various components of massive star forming regions (i.e. infalling, outflowing and rotating gas structures) within our own Galaxy, we require high angular resolution observations which are sensitive to structures o n all size scales. To this end, we present observations of the molecular and ionized gas towards massive star forming regions at 230 GHz from the SMA (with zero spacing from the JCMT) and at 22 and 23 GHz from the VLA at arcsecond or better resolution. These observations (of sources such as NGC7538, W51e2 and K3-50A) form an integral part of a multi-resolution study of the molecular and ionized gas dynamics of massive star forming regions (i.e. Klaassen & Wilson 2007). Through comparison of these observations with 3D radiative transfer models, we hope to be able to distinguish between various modes of massive star formation, such as ionized or halted accretion (i.e Keto 2003 or Klaassen et al. 2006 respectively).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا