ﻻ يوجد ملخص باللغة العربية
We report sensitive ATCA radio-continuum observations toward IRAS 15596-5301 and 16272-4837, two luminous objects (> 2x10^4 Lsun) thought to represent massive star-forming regions in early stages of evolution (due to previously undetected radio emission at the 1-sigma level of 2 mJy per beam). Also reported are 1.2-millimeter continuum and a series of molecular-line observations made with the SEST telescope. For IRAS 15596-5301, the observations reveal the presence of three distinct compact radio-continuum sources associated with a dense molecular core. We suggest that this core contains a cluster of B stars which are exciting compact HII regions that are in pressure equilibrium with the dense molecular surroundings. No radio continuum emission was detected from IRAS 16272-4837 (3-sigma limit of 0.2 mJy). However, a dense molecular core has been detected. The high luminosity and lack of radio emission from this massive core suggests that it hosts an embedded young massive protostar that is still undergoing an intense accretion phase. This scenario is supported by the observed characteristics of the line profiles and the presence of a bipolar outflow detected from observations of the SiO emission. We suggest that IRAS 16272-4837 is a bona fide massive star- forming region in a very early evolutionary stage, being the precursor of an ultra compact HII region.
We have recently completed an observing program with the Australia Telescope Compact Array towards massive star formation regions traced by 6.7 GHz methanol maser emission. We found the molecular cores could be separated into groups based on their as
We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e. W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and
We have observed the HN13C J=1-0 and DNC J=1-0 lines toward 18 massive clumps, including infrared dark clouds (IRDCs) and high-mass protostellar objects (HMPOs), by using the Nobeyama Radio Observatory 45 m telescope. We have found that the HN13C emi
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum mode
In order to distinguish between the various components of massive star forming regions (i.e. infalling, outflowing and rotating gas structures) within our own Galaxy, we require high angular resolution observations which are sensitive to structures o