ترغب بنشر مسار تعليمي؟ اضغط هنا

The Color Distribution in the Edgeworth-Kuiper Belt

130   0   0.0 ( 0 )
 نشر من قبل Nuno Peixinho
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have started since 1997 the Meudon Multicolor Survey of Outer Solar System Objects with the aim of collecting a large and homogeneous set of color data for Trans-Neptunian and Centaurs objects [...] We have a combined sample of 52 B-R color measurements for 8 Centaurs, 22 Classicals, 13 Plutinos, 8 Scattered objects and 1 object with unidentified dynamical class. This dataset is the largest single and homogeneous published dataset to date [...]. A strong (color) correlation with mean excitation velocity points toward a space weathering/impact origin for the color diversity. However, thorough modeling of the collisional/dynamical environment in the Edgeworth-Kuiper belt needs to be done in order to confirm this scenario. We found also that the Classical TNOs consist in the superposition of two distinct populations: the dynamically Cold Classical TNOs (red colors, low i, small sizes) and the dynamically Hot Classical TNOs (diverse colors, moderate and high i, larger sizes). [...] Our specific observation strategy [...] permitted us to highlight a few objects suspected to have true compositional and/or texture variation on their surfaces. These are 1998 HK151, 1999 DF9, 1999 OY3, 2000 GP183, 2000 OK67, and 2001 KA77 and should be prime targets for further observations [...]. Our survey has also highlighted 1998 SN165 whose colors and dynamical properties puts it in a new dynamical class distinct from the Classicals, its previously assigned dynamical class.



قيم البحث

اقرأ أيضاً

Here, we present results on the intrinsic collision probabilities, $ P_I$, and range of collision speeds, $V_I$, as a function of the heliocentric distance, $r$, in the trans-Neptunian region. The collision speed is one of the parameters, that serves as a proxy to a collisional outcome e.g., complete disruption and scattering of fragments, or formation of crater, where both processes are directly related to the impact energy. We utilize an improved and de-biased model of the trans-Neptunian object (TNO) region from the Outer Solar System Origins Survey (OSSOS). It provides a well-defined orbital distribution model of TNOs, based on multiple opposition observations of more than 1000 bodies. In this work we compute collisional probabilities for the OSSOS models of the main classical, resonant, detached+outer and scattering TNO populations. The intrinsic collision probabilities and collision speeds are computed using the {O}piks approach, as revised and modified by Wetherill for non-circular and inclined orbits. The calculations are carried out for each of the dynamical TNO groups, allowing for inter-population collisions as well as collisions within each TNO population, resulting in 28 combinations in total. Our results indicate that collisions in the trans-Neptunian region are possible over a wide range in ($r, V_I$) phase space. Although collisions are calculated to happen within $rsim 20 - 200$~AU and $V_I sim 0.1$~km/s to as high as $V_Isim9$~km/s, most of the collisions are likely to happen at low relative velocities $V_I<1$~km/s and are dominated by the main classical belt.
We re-examine the correlation between the colors and the inclinations of the Classical Kuiper Belt Objects (CKBOs) with an enlarged sample of optical measurements. The correlation is strong (rho=-0.7) and highly significant (>8 sigma) in the range 0- 34 deg. Nonetheless, the optical colors are independent of inclination below ~12 deg, showing no evidence for a break at the reported boundary between the so-called dynamically hot and cold populations near ~5 deg. The commonly accepted parity between the dynamically cold CKBOs and the red CKBOs is observationally unsubstantiated, since the group of red CKBOs extends to higher inclinations. Our data suggest, however, the existence of a different color break. We find that the functional form of the color-inclination relation is most satisfactorily described by a non-linear and stepwise behavior with a color break at ~12 deg. Objects with inclinations >12 deg show bluish colors which are either weakly correlated with inclination or are simply homogeneously blue, whereas objects with inclinations <12 deg are homogeneously red.
Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power-laws. The cold population has a bright-end slope, $alpha_{textrm{1}}=1.5_{-0.2}^{+0.4}$, and break magnitude, $H_{textrm{B}}=6.9_{-0.2}^{+0.1}$ (r-band). The hot population has a shallower bright-end slope of, $alpha_{textrm{1}}=0.87_{-0.2}^{+0.07}$, and break magnitude $H_{textrm{B}}=7.7_{-0.5}^{+1.0}$. Both populations share similar faint end slopes of $alpha_2sim0.2$. We estimate the masses of the hot and cold populations are $sim0.01$ and $sim3times10^{-4} mbox{ M$_{bigoplus}$}$. The broken power-law fit to the Trojan H-distribution has $alpha_textrm{1}=1.0pm0.2$, $alpha_textrm{2}=0.36pm0.01$, and $H_{textrm{B}}=8.3$. The KS test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide field survey data suggest that the brightest few hot objects, with $H_{textrm{r}}lesssim3$, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.
Both physical and dynamical properties must be considered to constrain the origins of the dynamically excited distant Solar System populations. We present high-precision (g-r) colors for 25 small (Hr>5) dynamically excited Trans-Neptunian Objects (TN Os) and centaurs acquired as part of the Colours of the Outer Solar System Origins Survey (Col-OSSOS). We combine our dataset with previously published measurements and consider a set of 229 colors of outer Solar System objects on dynamically excited orbits. The overall color distribution is bimodal and can be decomposed into two distinct classes, termed `gray and `red, that each has a normal color distribution. The two color classes have different inclination distributions: red objects have lower inclinations than the gray ones. This trend holds for all dynamically excited TNO populations. Even in the worst-case scenario, biases in the discovery surveys cannot account for this trend: it is intrinsic to the TNO population. Considering that TNOs are the precursors of centaurs, and that their inclinations are roughly preserved as they become centaurs, our finding solves the conundrum of centaurs being the only outer Solar System population identified so far to exhibit this property (Tegler et al. 2016). The different orbital distributions of the gray and red dynamically excited TNOs provide strong evidence that their colors are due to different formation locations in a disk of planetesimals with a compositional gradient.
We present a survey for bright Kuiper Belt Objects (KBOs) and Centaurs, conducted at the Kitt Peak National Observatory (KPNO) 0.9 m telescope with the KPNO 8k Mosaic CCD. The survey imaged 164 sq deg near opposition to a limiting red magnitude of 21 .1. Three bright KBOs and one Centaur were found, the brightest KBO having red magnitude 19.7, about 700 km in diameter assuming a dark Centaur-like 4% albedo. We estimate the power-law differential size distribution of the Classical KBOs to have index q = 4.2 (+0.4)(-0.3), with the total number of Classical KBOs with diameters larger than 100 km equal to 4.7 (+1.6)(-1.0) x 10^4. Additionally, we find that if there is a maximum object size in the Kuiper Belt, it must be larger than 1000 km in diameter. By extending our model to larger size bodies, we estimate that 30 (+16)(-12) Charon-sized and 3.2 (+2.8)(-1.7) Pluto-sized Classical KBOs remain undiscovered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا