Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra


الملخص بالإنكليزية

We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Omega_m, which arises mainly from preserving the location of the peaks in the angular power spectrum. This `horizon-angle degeneracy is considered in some detail and shown to follow a simple relation Omega_m h^{3.4} = constant. Adding the 2dFGRS power spectrum constrains Omega_m h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant h=0.665 +/- 0.047, the matter density Omega_m=0.313 +/- 0.055, and the physical CDM and baryon densities Omega_c h^2 = 0.115 +/- 0.009, Omega_b h^2 = 0.022 +/- 0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set a upper limit to the tensor-to-scalar ratio of r<0.7 at 95% confidence. We then show how these data can be used to constrain the equation of state of the vacuum, and find w<-0.52 at 95% confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/

تحميل البحث