ﻻ يوجد ملخص باللغة العربية
We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Omega_m, which arises mainly from preserving the location of the peaks in the angular power spectrum. This `horizon-angle degeneracy is considered in some detail and shown to follow a simple relation Omega_m h^{3.4} = constant. Adding the 2dFGRS power spectrum constrains Omega_m h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant h=0.665 +/- 0.047, the matter density Omega_m=0.313 +/- 0.055, and the physical CDM and baryon densities Omega_c h^2 = 0.115 +/- 0.009, Omega_b h^2 = 0.022 +/- 0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set a upper limit to the tensor-to-scalar ratio of r<0.7 at 95% confidence. We then show how these data can be used to constrain the equation of state of the vacuum, and find w<-0.52 at 95% confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/
We derive constraints on cosmological parameters using the power spectrum of galaxy clustering measured from the final two-degree field galaxy redshift survey (2dFGRS) and a compilation of measurements of the temperature power spectrum and temperatur
We present new cosmic microwave background (CMB) anisotropy results from the combined analysis of the three flights of the first Medium Scale Anisotropy Measurement (MSAM1). This balloon-borne bolometric instrument measured about 10 square degrees of
In a class of models designed to solve the cosmological constant problem by coupling scalar or tensor classical fields to the space-time curvature, the universal scale factor grows as a power law in the age, $a propto t^alpha$, regardless of the matt
We study the dynamics of the scalar field FLRW flat cosmological models within the framework of the Unified Dark Matter (UDM) scenario. In this model we find that the main cosmological functions such as the scale factor of the Universe, the scalar fi
We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions for the next generation surveys. By assuming the