ترغب بنشر مسار تعليمي؟ اضغط هنا

The time delay of the quadruple quasar RX J0911.4+0551

87   0   0.0 ( 0 )
 نشر من قبل Jens Hjorth
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical lightcurves of the gravitationally lensed components A (=A1+A2+A3) and B of the quadruple quasar RX J0911.4+0551 (z = 2.80). The observations were primarily obtained at the Nordic Optical Telescope between 1997 March and 2001 April and consist of 74 I-band data points for each component. The data allow the measurement of a time delay of 146 +- 8 days (2 sigma) between A and B, with B as the leading component. This value is significantly shorter than that predicted from simple models and indicates a very large external shear. Mass models including the main lens galaxy and the surrounding massive cluster of galaxies at z = 0.77, responsible for the external shear, yield H_0 = 71 +- 4 (random, 2 sigma) +- 8 (systematic) km/s/Mpc. The systematic model uncertainty is governed by the surface-mass density (convergence) at the location of the multiple images.



قيم البحث

اقرأ أيضاً

We present results from X-ray observations of the quadruply lensed quasar RX J0911.4+0551 using data obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-ray Observatory. The 29 ks observation detects a total of ~404 X-ra y photons (0.3 to 7.0 keV) from the four images of the lensed quasar. Deconvolution of the aspect corrected data resolves all four lensed images, with relative positions in good agreement with optical measurements. When compared to contemporaneous optical data, one of the lensed images (component A3) is dimmer by a factor of ~6 in X-rays with respect to the 2 brighter images (components A1 and A2). Spectral fitting for the combined images shows significant intrinsic absorption in the soft (0.2 to 2.4 keV) energy band, consistent with the mini-BAL nature of this quasar, while a comparison with ROSAT PSPC observations from 1990 shows a drop of ~6.5 in the total soft bandpass flux. The observations also detect ~157 X-ray photons arising from extended emission of the nearby cluster (peaked ~42 SW of RXJ0911.4+0551) responsible for the large external shear present in the system. The Chandra observation reveals the cluster emission to be complex and non-spherical, and yields a cluster temperature of kT = 2.3^{+1.8}_{-0.8} keV and a 2.0 to 10 keV cluster luminosity within a 1 Mpc radius of L_X = 7.6_{-0.2}^{+0.6} x 10^{43} ergs/s (error bars denote 90% confidence limits). Our mass estimate of the cluster within its virial radius is 2.3^{+1.8}_{-0.7} x 10^{14} solar, and is a factor of 2 smaller than, although consistent with, previous mass estimates based on the observed cluster velocity dispersion.
Observations by the Atacama Large Millimetre/sub-millimetre Array of the 358 GHz continuum emission of the gravitationally lensed quasar host RX J0911.4+0551 have been analysed. They complement earlier Plateau de Bure Interferometer observations of t he CO(7-6) emission. The good knowledge of the lensing potential obtained from Hubble Space Telescope observations of the quasar makes a joint analysis of the three emissions possible. It gives evidence for the quasar source to be concentric with the continuum source within 0.31 kpc and with the CO(7-6) source within 1.10 kpc. It also provides a measurement of the size of the continuum source, 0.76 $pm$ 0.04 kpc FWHM, making RX J0911.4+0551 one of the few high redshift galaxies for which the dust and gas components are resolved with dimensions being measured. Both are found to be very compact, the former being smaller than the latter by a factor of $sim$3.4$pm$0.4. Moreover, new measurements of the CO ladder $-$ CO(10-9) and CO(11-10) $-$ are presented that confirm the extreme narrowness of the CO line width (107$pm$20 km s$^{-1}$ on average). Their mere detection implies higher temperature and/or density than for typical quasar hosts at this redshift and suggests a possible contribution of the central AGN to gas and dust heating. The results are interpreted in terms of current understanding of galaxy evolution at the peak of star formation. They suggest that RX J0911.4+0551 is a young galaxy in an early stage of its evolution, having experienced no recent major mergers, star formation being concentrated in its centre.
We study brightness variations in the double lensed quasar UM673 (Q0142-100) with the aim of measuring the time delay between its two images. In the paper we combine our previously published observational data of UM673 obtained during the 2003 - 2005 seasons at the Maidanak Observatory with archival and recently observed Maidanak and CTIO UM673 data. We analyze the V, R and I-band light curves of the A and B images of UM673, which cover ten observational seasons from August 2001 to November 2010. We also analyze the time evolution of the difference in magnitudes between images A and B of UM673 over more than ten years. We find that the quasar exhibits both short-term (with amplitude of sim 0.1 mag in the R band) and high-amplitude (sim 0.3 mag) long-term variability on timescales of about several months and several years, respectively. These brightness variations are used to constrain the time delay between the images of UM673. From cross-correlation analysis of the A and B quasar light curves and error analysis we measure the mean time delay and its error of 89 pm11 days. Given the input time delay of 88 days, the most probable value of the delay that can be recovered from light curves with the same statistical properties as the observed R-band light curves of UM673 is 95{+5/-16}{+14/-29} days (68 and 95 % confidence intervals). Analysis of the V - I color variations and V, R and I-band magnitude differences of the quasar images does not show clear evidence of the microlensing variations between 1998 and 2010.
465 - P. T. Anh , F. Boone , D. T. Hoai 2013
We report on high angular resolution observations of the CO(7-6) line and millimeter continuum in the host galaxy of the gravitationally lensed (z~2.8) quasar RXJ0911.4+0551 using the Plateau de Bure Interferometer. Our CO observations resolve the mo lecular disk of the source. Using a lens model based on HST observations we fit source models to the observed visibilities. We estimate a molecular disk radius of 1$pm$0.2 kpc and an inclination of 69$pm$6deg, the continuum is more compact and is only marginally resolved by our observations. The relatively low molecular gas mass, $Mgas=(2.3pm 0.5)times 10^{9}$ Msolar, and far infrared luminosity, $LFIR=(7.2pm 1.5) times 10^{11}$ Lsolar, of this quasar could be explained by its relatively low dynamical mass, $Mdyn=(3.9pm 0.9)times 10^9$ Msolar. It would be a scaled-down version the QSOs usually found at high-z. The FIR and CO luminosities lie on the correlation found for QSOs from low to high redshifts and the gas-to-dust ratio ($45pm 17$) is similar to the one measured in the z=6.4 QSO, SDSS J1148+5251. Differential magnification affects the continuum-to-line luminosity ratio, the line profile and possibly the spectral energy distribution.
214 - T. A. Akhunov 2008
The paper has been withdrawn because double checking and comparison with other data sets after the original submission showed that a broken R-band filter at the Maidanak telescope had affected our quasar monitoring observations in the years 2004 and 2005. They had led to partially spurious measurements, hence our original analysis and conclusions are not reliable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا