ﻻ يوجد ملخص باللغة العربية
It is shown that pulsar radio emission can be generated effectively through a streaming motion in the polar-cap regions of a pulsar magnetosphere causing nonresonant growth of waves that can escape directly. As in other beam models, a relatively low-energy high-density beam is required. The instability generates quasi-transverse waves in a beam mode at frequencies that can be well below the resonant frequency. As the waves propagate outward growth continues until the height at which the wave frequency is equal to the resonant frequency. Beyond this point the waves escape in a natural plasma mode (L-O mode). This one-step mechanism is much more efficient than previously widely considered multi-step mechanisms.
In this Letter we propose that coherent radio emission of Crab, other young energetic pulsars, and millisecond pulsars is produced in the magnetospheric current sheet beyond the light cylinder. We carry out global and local two-dimensional kinetic pl
We investigated the pulsar radio luminosity ($L$), emission efficiency (ratio of radio luminosity to its spin-down power $dot{E}$), and death line in the diagram of magnetic field (B) versus spin period (P), and found that the dependence of pulsar ra
Since pulsars were discovered as emitters of bright coherent radio emission more than half a century ago, the cause of the emission has remained a mystery. In this Letter we demonstrate that coherent radiation can be directly generated in non-station
Observations suggest that in normal period radio pulsars, coherent curvature radiation is excited within 10$%$ of the light cylinder. The coherence is attributed to Langmuir mode instability in a relativistically streaming one-dimensional plasma flow
The computational cost of searching for new pulsars is a limiting factor for upcoming radio telescopes such as SKA. We introduce four new algorithms: an optimal constant-period search, a coherent tree search which permits optimal searching with O(1)