ﻻ يوجد ملخص باللغة العربية
As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies $> 40$ EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.
We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi
The sources of ultra-high energy cosmic rays (UHECRs) are still one of the main open questions in high-energy astrophysics. If UHECRs are accelerated in astrophysical sources, they are expected to produce high-energy photons and neutrinos due to the
This is a summary of a series of lectures on the current experimental and theoretical status of our understanding of origin and nature of cosmic radiation. Specific focus is put on ultra-high energy cosmic radiation above ~10^17 eV, including seconda
We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuatio